Expansion tunnel

Last updated

In aeronautics, expansion and shock tunnels are aerodynamic testing facilities with a specific interest in high speeds and high temperature testing. Shock tunnels use steady flow nozzle expansion whereas expansion tunnels use unsteady expansion with higher enthalpy, or thermal energy. In both cases the gases are compressed and heated until the gases are released, expanding rapidly down the expansion chamber. The tunnels reach speeds from Mach 3 to Mach 30 to create testing conditions that simulate hypersonic to re-entry flight. These tunnels are used by military and government agencies to test hypersonic vehicles that undergo a variety of natural phenomenon that occur during hypersonic flight. [1]

Contents

Expansion process

Expansion tunnel

Expansion tunnels use a dual-diaphragm system where the diaphragms act as rupture discs, or a pressure relief. The tunnel is separated into three sections: drive, driven, and acceleration. The drive section is filled with high pressure helium gas. The driven section is filled with a lower pressure desired test gas, such as carbon dioxide, helium, nitrogen, or oxygen. The acceleration section is filled with an even lower pressurized test gas. Each section is divided by a diaphragm, which is meant to be ruptured in sequence causing the first diaphragm to rupture, mixing and expanding the drive and the driven. When the shock wave hits the second diaphragm, it ruptures causing the two gases to mix with the acceleration and expand down the enclosed test section. Operation time is approximately 250 microseconds. [2]

Shock tunnel

Reflected shock tunnels heat and pressurize a stagnant gas by using shockwaves that are redirected back into the center; this excites the gases and produces movement, heat, and pressure. The gases are then released and expanded through the nozzle and into the test chamber. Operation time is approximately 20 milliseconds. [3]

Testing

During the expansion process, a variety of test are run to analyze the aerodynamic and thermal properties of the test vehicle.

Skin friction
The drag that is created when an object travels through a fluid, such as a liquid or gas
Flow chemistry
The analysis of reactions that take place during a continuous flow
Durability
The ability to withstand deterioration
Turbulence
The disordered movement of fluids
Heat transfer
The thermal energy transfer from one system to another
Aero elastic
The forces created by the movement of air and the manner in which air bends around the object
Thermal protection
The ability to withstand heat transfer, reducing the temperature
Vibration
The oscillation, or shaking, of the molecules

Testing instruments

Thin-film heat transfer gauge
When the gauge is heated, the resistance changes; this causes a change in voltage, which is used to calculate the amount of heat transferred into an object
Piezoelectric pressure transducer
Under pressure, crystals became electrically charged, proportional to that of the pressure exerted
Laser diode spectrograph
Measures the properties of the refracted light, generated by the laser traveling through the turbulent gas around an object
Force -moment balance
Used to measure three or six components, three forces (lift, drag, and side) and three moments (pitch, roll, and yaw), to completely describe the conditions on the model. Forces on the model are detected by strain gauges located on the balance. Each gauge measures a force by the stretching of an electrical element or foil in the gauge. The stretching changes the resistance of the gauge which changes the measured electric current through the gauge according to Ohm's law. This resistance change, usually measured using a Wheatstone bridge, is related to the strain by the quantity known as the gauge factor.

Facilities

Hypervelocity Expansion Tube (HET)

The HET is one of the shock tunnels in the Caltech Hypersonics group at the California Institute of Technology directed by Professor Joanna Austin. It operates similarly to a shock tube where a shock formed by the primary diaphragm heats up the test gas. The novel part of this facility is when its test gas is further accelerated by an expansion shock that forms when the primary shock interacts with a second downstream diaphragm. It is a 150mm inner diameter facility with the capability to reach Mach 4-8, and was built in 2005. [4]

HYPULSE

The Hypersonic Pulse Facility (HYPULSE) is operated by Purdue University in West Lafayette, Indiana on the campus of Purdue's Maurice J. Zucrow Laboratories. HYPULSE was formerly operated as NASA's HYPULSE by the General Applied Science Laboratory (GASL) in New York before it was donated to Purdue in 2020 by Northrop Grumman. The HYPULSE facility was developed for the testing of re-entry vehicles and air-breathing engines. The specifications of the HYPULSE include a diameter of 7 feet and a 19 foot length. This facility was upgraded to have two modes, Reflected Shock Tunnel (RST) and Shock-Expansion Tunnel (SET). HYPULSE-RST generates speeds from Mach 5 to 10, whereas the HYPULSE-SET produces speeds from Mach 12 to 25. [3] [5] [6]

Vehicles tested at HYPULSE:

LENS-I,II

Large Energy National Shock tunnels (LENS) were constructed over the past 15 years at the Aerothermal/Aero-optic Evaluation Center (AAEC) at CUBRC. The LENS facilities were developed for the testing of advanced missile seekerheads and scramjet engines. LENS I and LENS II have similar control, compression and data acquisition systems. LENS I facility has an 11-inch diameter by 25.5 foot long drive tube that is electrically heated with an 8-inch by 60 foot driven section capable of reaching Mach 7 to 18. Test models can have a maximum length of 12 feet and a diameter of 3 feet. The LENS I heats up the drive gas to 750 degrees F to operate at a maximum 30,000 psi. The LENS II facility integrates a 24-inch diameter to both the 60 foot drive and also the 100 foot driven tubes, which runs between Mach 3 and 9. [7]

Vehicles tested at LENS-I:
Vehicles tested at LENS-II:

LENS-X

LENS-X is an 8 foot diameter by 100 foot expansion tunnel with a top speed of Mach 30. The drive chamber, filled with helium or hydrogen gas, is compressed to 3,000 psi at 1000 degrees Fahrenheit; this breaks the first diaphragm, causing the driven chamber to experience an influx of hot gas, generating pressures over 20,000 psi before the second diaphragm is ruptured. [8]

Vehicles tested at LENS-X:

High Enthalpy Shock Tunnel (HIEST)

It is located at Kakuda Space research centre – JAXA (Japan Aerospace Exploration Agency). Both high pressure and high temperature can be simulated simultaneously in this tunnel. Major applications include Aerodynamic and aerothermodynamic tests on scale models of returnable spacecraft; and Combustion process tests on scramjet engines. HYFLEX (Hypersonic Flight Experiment) which was a re-entry demonstrator prototype vehicle of JAXA was tested in this facility. Another speciality of this tunnel is 3 pistons of different masses can be used. [9]

T4 Shock Tunnel

It is located at University of Queensland, Australia. It is a large free piston driven shock tunnel capable of producing sub-orbital flow speeds at a range of Mach numbers. The T4 shock tunnel began operation in April 1987 and commenced routine operation, after a commissioning period, in September 1987. The 10000th shot of T4 was fired in August 2008 and it remains significantly better than X2, though outclassed by X3R. [10]

T5 Hypervelocity Shock Tunnel Facility

It is a free piston shock tunnel located at California Institute of Technology, USA. It is the largest free-piston shock tunnel in the world at a university. It is an impulse facility capable of reaching very high stagnation enthalpies (25 MJ/kg) and pressures (40 MPa). The test time is on the order of 1 ms. It uses helium and argon as the driver gas and a .25" steel plate as its primary diaphragm. Test gases include air, nitrogen, carbon dioxide, or mixtures thereof. The 120kg piston can reach maximum speeds in excess of 300 m/s. [11]

Related Research Articles

<span class="mw-page-title-main">Ramjet</span> Atmospheric jet engine designed to operate at supersonic speeds

A ramjet, is a form of airbreathing jet engine that uses the forward motion of the engine to take in air for combustion that produces jet thrust. Since it produces no thrust when stationary, ramjet-powered vehicles require an assisted take-off like a rocket assist to accelerate it to a speed where it begins to produce thrust. Ramjets work most efficiently at supersonic speeds around Mach 3 and can operate up to speeds of Mach 6.

<span class="mw-page-title-main">Hypersonic speed</span> Speed that is highly supersonic

In aerodynamics, a hypersonic speed is one that exceeds five times the speed of sound, often stated as starting at speeds of Mach 5 and above.

<span class="mw-page-title-main">Magnetohydrodynamic drive</span> Vehicle propulsion using electromagnetic fields

A magnetohydrodynamic drive or MHD accelerator is a method for propelling vehicles using only electric and magnetic fields with no moving parts, accelerating an electrically conductive propellant with magnetohydrodynamics. The fluid is directed to the rear and as a reaction, the vehicle accelerates forward.

Compressible flow is the branch of fluid mechanics that deals with flows having significant changes in fluid density. While all flows are compressible, flows are usually treated as being incompressible when the Mach number is smaller than 0.3. The study of compressible flow is relevant to high-speed aircraft, jet engines, rocket motors, high-speed entry into a planetary atmosphere, gas pipelines, commercial applications such as abrasive blasting, and many other fields.

<span class="mw-page-title-main">Scramjet</span> Jet engine where combustion takes place in supersonic airflow

A scramjet is a variant of a ramjet airbreathing jet engine in which combustion takes place in supersonic airflow. As in ramjets, a scramjet relies on high vehicle speed to compress the incoming air forcefully before combustion, but whereas a ramjet decelerates the air to subsonic velocities before combustion using shock cones, a scramjet has no shock cone and slows the airflow using shockwaves produced by its ignition source in place of a shock cone. This allows the scramjet to operate efficiently at extremely high speeds.

<span class="mw-page-title-main">NASA X-43</span> Unmanned US experimental supersonic aircraft, 1991-2000

The NASA X-43 was an experimental unmanned hypersonic aircraft with multiple planned scale variations meant to test various aspects of hypersonic flight. It was part of the X-plane series and specifically of NASA's Hyper-X program developed in the late 1990s. It set several airspeed records for jet aircraft. The X-43 is the fastest jet-powered aircraft on record at approximately Mach 9.6.

<span class="mw-page-title-main">SABRE (rocket engine)</span> Synergetic Air Breathing Rocket Engine - a hybrid ramjet and rocket engine

SABRE is a concept under development by Reaction Engines Limited for a hypersonic precooled hybrid air-breathing rocket engine. The engine is being designed to achieve single-stage-to-orbit capability, propelling the proposed Skylon spaceplane to low Earth orbit. SABRE is an evolution of Alan Bond's series of LACE-like designs that started in the early/mid-1980s for the HOTOL project.

<span class="mw-page-title-main">Shock tube</span> Instrument

The shock tube is an instrument used to replicate and direct blast waves at a sensor or a model in order to simulate actual explosions and their effects, usually on a smaller scale. Shock tubes can also be used to study aerodynamic flow under a wide range of temperatures and pressures that are difficult to obtain in other types of testing facilities. Shock tubes are also used to investigate compressible flow phenomena and gas phase combustion reactions. More recently, shock tubes have been used in biomedical research to study how biological specimens are affected by blast waves.

<span class="mw-page-title-main">Light-gas gun</span> Gun designed to generate very high speed

The light-gas gun is an apparatus for physics experiments. It is a highly specialized gun designed to generate extremely high velocities. It is usually used to study high-speed impact phenomena, such as the formation of impact craters by meteorites or the erosion of materials by micrometeoroids. Some basic material research relies on projectile impact to create high pressure; such systems are capable of forcing liquid hydrogen into a metallic state.

<span class="mw-page-title-main">Hypervelocity</span> Very high velocity

Hypervelocity is very high velocity, approximately over 3,000 meters per second. In particular, hypervelocity is velocity so high that the strength of materials upon impact is very small compared to inertial stresses. Thus, metals and fluids behave alike under hypervelocity impact. Extreme hypervelocity results in vaporization of the impactor and target. For structural metals, hypervelocity is generally considered to be over 2,500 m/s. Meteorite craters are also examples of hypervelocity impacts.

<span class="mw-page-title-main">Hypersonic wind tunnel</span>

A hypersonic wind tunnel is designed to generate a hypersonic flow field in the working section, thus simulating the typical flow features of this flow regime - including compression shocks and pronounced boundary layer effects, entropy layer and viscous interaction zones and most importantly high total temperatures of the flow. The speed of these tunnels vary from Mach 5 to 15. The power requirement of a wind tunnel increases linearly with its cross section and flow density, but cubically with the test velocity required. Hence installation of a continuous, closed circuit wind tunnel remains a costly affair. The first continuous Mach 7-10 wind tunnel with 1x1 m test section was planned at Kochel am See, Germany during WW II and finally put into operation as 'Tunnel A' in the late 1950s at AEDC Tullahoma, TN, USA for an installed power of 57 MW. In view of these high facility demands, also intermittently operated experimental facilities like blow-down wind tunnels are designed and installed to simulate the hypersonic flow. A hypersonic wind tunnel comprises in flow direction the main components: heater/cooler arrangements, dryer, convergent/divergent nozzle, test section, second throat and diffuser. A blow-down wind tunnel has a low vacuum reservoir at the back end, while a continuously operated, closed circuit wind tunnel has a high power compressor installation instead. Since the temperature drops with the expanding flow, the air inside the test section has the chance of becoming liquefied. For that reason, preheating is particularly critical.

<span class="mw-page-title-main">Boeing X-51 Waverider</span> Unmanned hypersonic experimental aircraft

The Boeing X-51 Waverider is an unmanned research scramjet experimental aircraft for hypersonic flight at Mach 5 and an altitude of 70,000 feet (21,000 m). The aircraft was designated X-51 in 2005. It completed its first powered hypersonic flight on 26 May 2010. After two unsuccessful test flights, the X-51 completed a flight of over six minutes and reached speeds of over Mach 5 for 210 seconds on 1 May 2013 for the longest duration powered hypersonic flight.

Scramjet programs refers to research and testing programs for the development of supersonic combustion ramjets, known as scramjets. This list provides a short overview of national and international collaborations, and civilian and military programs. The USA, Russia, India, and China (2014), have succeeded at developing scramjet technologies.

The University of Texas at Arlington Aerodynamics Research Center (ARC) is a facility located in the southeast portion of the campus operated under the Department of Mechanical and Aerospace Engineering. It was established in 1986 as part of an expansion of UTA's College of Engineering. The ARC contributes to the vision of UTA and the University of Texas System to transform the university into a full-fledged research institution. It showcases the aerodynamics research activities at UTA and, in its history, has established itself as a unique facility at a university level. The wind tunnels and equipment in the facility were mainly built by scouting for and upgrading decommissioned equipment from the government and industry. Currently, Masters and Ph.D. students perform research in the fields of high-speed gas dynamics, propulsion, and Computational fluid dynamics among other projects related to aerodynamics.

<span class="mw-page-title-main">Hypersonic flight</span> Flight at altitudes lower than 90km and at speeds above Mach 5

Hypersonic flight is flight through the atmosphere below altitudes of about 90 km at speeds greater than Mach 5, a speed where dissociation of air begins to become significant and high heat loads exist. Speeds over Mach 25 have been achieved below the thermosphere as of 2020.

<span class="mw-page-title-main">Ayaks</span>

The Ayaks is a hypersonic waverider aircraft program started in the Soviet Union and currently under development by the Hypersonic Systems Research Institute (HSRI) of Leninets Holding Company in Saint Petersburg, Russia.

A shock-induced combustion ramjet engine (abbreviated as shcramjet; also called oblique detonation wave engine; also called standing oblique detonation ramjet (sodramjet); or simply referred to as shock-ramjet engine) is a concept of air-breathing ramjet engine, proposed to be used for hypersonic and/or single-stage-to-orbit propulsion applications.

<span class="mw-page-title-main">Hypervelocity Wind Tunnel 9</span> Military unit

AEDC Hypervelocity Wind Tunnel 9 is a hypersonic wind tunnel owned by the United States Air Force and operated by National Aerospace Solutions The facility can generate high Mach numbers and high Reynolds for hypersonic ground testing and the validation of computational simulations for the Air Force and Department of Defense.

<span class="mw-page-title-main">MARHy Wind Tunnel</span> Research facility in France

The MARHy Hypersonic low density Wind Tunnel, located at the ICARE Laboratory in Orléans, France, is a research facility used extensively for fundamental and applied research of fluid dynamic phenomena in rarefied compressible flows. Its name is an acronym for Mach Adaptable Rarefied Hypersonic, and the wind tunnel is recorded under this name in the European portal MERIL.

<span class="mw-page-title-main">PHEDRA (Arc-jet) high enthalpy wind tunnel</span>

The PHEDRA High Enthalpy low density Wind Tunnel, located at the ICARE Laboratory in Orléans, France, is a research facility used extensively for fundamental and applied research on non equilibrium plasma flows and planetary atmospheric entries. Its name is an acronym for soufflerie à Plasma Hors Equilibre de Rentreés Atmosphériques. Phedra wind tunnel takes part of the European Landscape Network portal MERIL.

References

  1. Stalker R.J."Modern developments in hypersonic wind tunnels,"The Aeronautical Journal January 2006
  2. Hollis, Brian R.; Perkins, John N., “Hypervelocity Heat-Transfer Measurements in an Expansion Tube,” AIAA Paper 96-2240 (New Orleans, LA: 19th AIAA Advanced Measurement and Ground Testing Technology Conference, 1996)
  3. 1 2 Bakos, R. J.; Tsai, C.-Y.; Rogers, R. C.; Shih, A. T.,"The Mach 10 Component of NASA's Hyper-X Ground Test Program," Langley Research Center(1999)
  4. Dufrene, A.; Sharma, M.; Austin, J. M. (2007). "Design and Characterization of a Hypervelocity Expansion Tube Facility". Journal of Propulsion and Power. AIAA. 23 (6): 1185–1193. doi:10.2514/1.30349 . Retrieved 2015-06-01.
  5. "Purdue hypersonics receives boost from Northrop Grumman shock tunnel donation".
  6. Tamagno, Jose; Bakos, Robert; Pulsonetti, Maria; Erdos, John, “Hypervelocity Real Gas Capabilities of GASL's Expansion Tube (HYPULSE) Facility,” AIAA Paper 90-1390(Seattle, WA: AIAA 16th Aerodynamic Ground Testing Conference, 1990)
  7. T.P. Wadhams,M.S. Holden, M.G. MacLean,"Experimental Space Shuttle Orbiter Studies to Acquire Data for Code and Flight Heating Model Validation," AIAA 2010-1576(Orlando, Fl:48th AIAA Aerospace Sciences Meeting and Exhibit 2010)
  8. Bland, Eric, "Fastest Wind Tunnel to Put NASA's Orion to the Test,"Discovery News. "Fastest Wind Tunnel to Put NASA's Orion to the Test: Discovery News". Archived from the original on 2011-06-28. Retrieved 2011-02-06.
  9. "Kakuda Space Center -Test Facilities-". Archived from the original on 2013-02-20. Retrieved 2012-04-01.
  10. "Hypersonics - School of Mechanical & Mining Engineering - University of Queensland".
  11. "Joanna M. Austin | Hypersonics".