The eye-tracking device (ETD) is a headmounted device, designed for measurement of 3D eye and head movements under experimental and natural conditions. The tracker permits comprehensive measurement of eye movement (three degrees of freedom) and optionally head movement (six degrees of freedom). It represents a tool for the investigation of sensorimotor behaviour, particularly of the vestibular and oculomotor systems in both health and disease.
It was originally developed by the German Space Agency (DLR) for use on the International Space Station (ISS) and was uploaded to the station as part of the joint European / Russian space programme in early 2004. The device was designed by Prof. Dr. Andrew H. Clarke (Vestibular Lab, Charité Berlin) together with the companies Chronos Vision and Mtronix in Berlin and integrated for space utilisation by the Munich-based company Kayser-Threde.
In the first set of experiments, conducted by Prof. Clarke’s team in cooperation with the Moscow Institute for Biomedical Problems, the Eye Tracking Device was used for the measurement of Listing's plane – a coordinate framework, which is used to define the movement of the eyes in the head. The scientific goal was to determine how Listing’s plane is altered under various gravity conditions. In particular the influence of long-duration microgravity on board the ISS and of the subsequent return to Earth’s gravity was examined. The findings contribute to our understanding of neural plasticity in the vestibular and oculomotor systems.
These experiments were commenced in the spring 2004 and continued until late 2008 with a series of cosmonauts and astronauts, who each spent six months on board the ISS.
Examination of the orientation of Listing's plane during the course of a prolonged space mission is of particular interest, as on Earth the Listing’s plane appears to be dependent on input from the vestibular system i.e. detected through the head position with relation to gravity. By exposing the astronaut to the weightlessness of space, this experiment can follow the subsequent adaptation of the astronaut’s vestibular system during the flight and after returning to Earth. The key question in this experiment is to what extent the orientation of Listing’s plane is altered by the adaptation of the vestibular system to weightlessness, or under gravitational levels less than or greater than those of Earth. A further question is whether the body compensates for the missing inputs from the vestibular system by substituting other mechanisms during long-term spaceflight. [1]
The ETD was employed for this study throughout the period from 2004 to 2008. During each six-month increment the experimental procedure was performed at regular three-week intervals so that the adaptation to microgravity could be evaluated. In addition equivalent measurements were made over the initial weeks after the return to Earth of each cosmonaut or astronaut. In the meantime the ETD equipment remains on the ISS as a general purpose instrument. It is currently in use by a group of Russian scientists from the Institute for Biomedical Problems, who are examining eye and head movement coordination in microgravity.
Digital eye-tracking cameras – designed around state-of-the-art CMOS image sensors – are interfaced to a dedicated processor board in the host PC via bi-directional, high speed digital transmission links (400 Mbit/s). This PCI plug-in board carries the front-end processing architecture, consisting of digital signal processors (DSP) and programmable logic devices (FPGA) for binocular, online image and signal acquisition. [3]
For the eye tracking task, a substantial data reduction is performed by the sensor and the front-end processing. Thus, only preselected data are transferred from the image sensor through to the host PC where the final algorithms and data storage are implemented. This eliminates the bottleneck caused by standard frame-by-frame image acquisition, and thus facilitates considerably higher image sampling rates.
This processing architecture is integrated into a ruggedised, IBM compatible PC, which permits visualisation of the eyes and the corresponding signals. An important design feature is the digital storage of all image sequences from the cameras as digital files on exchangeable hard disk. After completion of each ISS mission, the hard disk containing the recordings is returned to Earth. This ensures comprehensive and reliable image processing analysis in the investigators’ lab and minimises the time required for the experiment on the ISS.
In parallel to the space-qualified version of the Eye Tracker a commercially available model has been manufactured by the company Chronos Vision in Berlin and is installed in many laboratories in Europe, North America and Asia, where it represents an essential tool for the examination of numerous neurophysiological phenomena.
{{cite web}}
: CS1 maint: archived copy as title (link)The sense of balance or equilibrioception is the perception of balance and spatial orientation. It helps prevent humans and nonhuman animals from falling over when standing or moving. Equilibrioception is the result of a number of sensory systems working together; the eyes, the inner ears, and the body's sense of where it is in space (proprioception) ideally need to be intact.
The vestibulo-ocular reflex (VOR) is a reflex acting to stabilize gaze during head movement, with eye movement due to activation of the vestibular system. The reflex acts to stabilize images on the retinas of the eye during head movement. Gaze is held steadily on a location by producing eye movements in the direction opposite that of head movement. For example, when the head moves to the right, the eyes move to the left, meaning the image a person sees stays the same even though the head has turned. Since slight head movement is present all the time, VOR is necessary for stabilizing vision: people with an impaired reflex find it difficult to read using print, because the eyes do not stabilise during small head tremors, and also because damage to reflex can cause nystagmus.
STS-41 was the 36th Space Shuttle mission, and the eleventh mission of the Space Shuttle Discovery. The four-day mission had a primary objective of launching the Ulysses probe as part of the "International Solar Polar Mission" (ISPM).
STS-62 was a Space Shuttle program mission flown aboard Space ShuttleColumbia. The primary payloads were the USMP-02 microgravity experiments package and the OAST-2 engineering and technology payload, both in the orbiter's cargo bay. The two-week mission also featured a number of biomedical experiments focusing on the effects of long duration spaceflight. The landing was chronicled by the 1994 Discovery Channel special about the Space Shuttle program and served as the show's opening. A C.F. Martin backpacker guitar was also flown aboard Columbia during the mission.
STS-87 was a Space Shuttle mission launched from Launch Complex 39B of the Kennedy Space Center on 19 November 1997. It was the 88th flight of the Space Shuttle and the 24th flight of Columbia. The mission goals were to conduct experiments using the United States Microgravity Payload (USMP-4), conduct two EVAs, and deploy the SPARTAN-201 experiment. This mission marked the first time an EVA was performed from Columbia. An EVA from Columbia was originally planned for STS-5 in 1982 but was canceled due to spacesuit problems. It also marked the first EVA conducted by a Japanese astronaut, Takao Doi.
A robonaut is a humanoid robot, part of a development project conducted by the Dexterous Robotics Laboratory at NASA's Lyndon B. Johnson Space Center (JSC) in Houston, Texas. Robonaut differs from other current space-faring robots in that, while most current space robotic systems are designed to move large objects, Robonaut's tasks require more dexterity.
Venturing into the environment of space can have negative effects on the human body. Significant adverse effects of long-term weightlessness include muscle atrophy and deterioration of the skeleton. Other significant effects include a slowing of cardiovascular system functions, decreased production of red blood cells, balance disorders, eyesight disorders and changes in the immune system. Additional symptoms include fluid redistribution, loss of body mass, nasal congestion, sleep disturbance, and excess flatulence. Overall, NASA refers to the various deleterious effects of spaceflight on the human body by the acronym RIDGE.
Foveated imaging is a digital image processing technique in which the image resolution, or amount of detail, varies across the image according to one or more "fixation points". A fixation point indicates the highest resolution region of the image and corresponds to the center of the eye's retina, the fovea.
Weightlessness is the complete or near-complete absence of the sensation of weight. It is also termed zero gravity, zero G-force, or zero-G. Micro-g environment is more or less synonymous, with the recognition that g-forces are never exactly zero.
The Treadmill with Vibration Isolation Stabilization System, commonly abbreviated as TVIS, is a treadmill for use on board the International Space Station and is designed to allow astronauts to run without vibrating delicate microgravity science experiments in adjacent labs. International Space Station treadmills, not necessarily described here, have included the original treadmill, the original TVIS, the БД-2, the Combined Operational Load-Bearing External Resistance Treadmill (COLBERT), and the Treadmill 2. Some share a name, some a design, some a function, some use different (passive) vibration-suppression systems, some it is unclear how they differ.
The International Space Station is a platform for scientific research that requires one or more of the unusual conditions present in low Earth orbit. The primary fields of research include human research, space medicine, life sciences, physical sciences, astronomy and meteorology. The 2005 NASA Authorization Act designated the American segment of the International Space Station as a national laboratory with the goal of increasing the use of the ISS by other federal agencies and the private sector.
m ELIPS - European Programme for Life and Physical Sciences in Space and applications utilising the International Space Station started in 2001 and was intended to cover the activities for the following 5 years. This Microgravity Programme at the European Space Agency (ESA) is an optional programme, with currently 17 ESA member states participating. The ELIPS programme prepares and performs research on the International Space Station, and other uncrewed mission platforms like Sounding Rockets, in fundamental and applied life and physical sciences. ELIPS is the continuation of the earlier European microgravity programmes EMIR 1&2, and the Microgravity Facilities for Columbus, MFC.
Space neuroscience or astroneuroscience is the scientific study of the central nervous system (CNS) functions during spaceflight. Living systems can integrate the inputs from the senses to navigate in their environment and to coordinate posture, locomotion, and eye movements. Gravity has a fundamental role in controlling these functions. In weightlessness during spaceflight, integrating the sensory inputs and coordinating motor responses is harder to do because gravity is no longer sensed during free-fall. For example, the otolith organs of the vestibular system no longer signal head tilt relative to gravity when standing. However, they can still sense head translation during body motion. Ambiguities and changes in how the gravitational input is processed can lead to potential errors in perception, which affects spatial orientation and mental representation. Dysfunctions of the vestibular system are common during and immediately after spaceflight, such as space motion sickness in orbit and balance disorders after return to Earth.
Astronaut training describes the complex process of preparing astronauts in regions around the world for their space missions before, during and after the flight, which includes medical tests, physical training, extra-vehicular activity (EVA) training, procedure training, rehabilitation process, as well as training on experiments they will accomplish during their stay in space.
The following page is a list of scientific research that is currently underway or has been previously studied on the International Space Station by the European Space Agency.
A Beautiful Planet is a 2016 American documentary film directed, written, and produced by Toni Myers, and narrated by actress Jennifer Lawrence. It was originally released exclusively for IMAX theatres. Created in cooperation with the National Aeronautics and Space Administration (NASA), the documentary utilizes footage recorded by astronauts aboard the International Space Station (ISS) over the course of fifteen months. The documentary examines how astronauts live and work on a daily basis. The astronauts are representing the respective space agencies of the United States, Russia, Europe, and Japan.
Expedition 53 was the 53rd expedition to the International Space Station, which began upon the departure of Soyuz MS-04 on September 2, 2017 and concluded upon the departure of Soyuz MS-05 on December 14, 2017. Randolph Bresnik, Paolo Nespoli and Sergey Ryazansky were transferred from Expedition 52, with Randolph Bresnik taking the commander role. Transfer of Command from Expedition 53 to Expedition 54 was done on December 13, 2017. Expedition 53 officially ended on December 14, 2017 5:14 UTC, with the undocking of Soyuz MS-05.
The ISS U.S. National Lab, commonly known as the ISS National Lab, is a U.S. government-funded national laboratory established on 30 December 2005 by the 2005 NASA Authorization Act. With principal research facilities located in the United States Orbital Segment (USOS) of the International Space Station (ISS), the Laboratory conducts research in life sciences, physical sciences, technology development and remote sensing for a broad range of academic, government and commercial users. Of the 270 payloads that the Center for the Advancement of Science in Space (CASIS) has sent to the ISS, 176 have been for commercial companies including Merck & Co., Novartis, Eli Lilly and Company, Hewlett Packard Enterprise, Honeywell, and Procter & Gamble.
SpaceX CRS-24, also known as SpX-24, was a Commercial Resupply Service mission to the International Space Station launched on 21 December 2021, at 10:07:08 UTC. The mission is contracted by NASA and is flown by SpaceX using a Cargo Dragon. This is the fourth flight for SpaceX under NASA's CRS Phase 2 contract awarded in January 2016.
SpaceX CRS-25, also known as SpX-25, was a Commercial Resupply Service mission (CRS) to the International Space Station (ISS) that was launched on 15 July 2022. The mission was contracted by NASA and was flown by SpaceX using their reusable spacecraft, the Cargo Dragon. The vehicle delivered supplies to the crew aboard the ISS along with multiple pieces of equipment that will be used to conduct multiple research investigations aboard the ISS.