FAM167A

Last updated
FAM167A
Identifiers
Aliases FAM167A , C8orf13, D8S265, family with sequence similarity 167 member A, DIORA-1
External IDs OMIM: 610085 MGI: 3606565 HomoloGene: 14243 GeneCards: FAM167A
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_053279

NM_177628

RefSeq (protein)

NP_444509

NP_808296

Location (UCSC) Chr 8: 11.42 – 11.48 Mb Chr 14: 63.67 – 63.7 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Family with sequence similarity 167, member A is a protein in humans that is encoded by the FAM167A gene located on chromosome 8. [5] FAM167A and its paralogs are protein encoding genes containing the conserved domain DUF3259, a protein of unknown function. [6] FAM167A has many orthologs in which the domain of unknown function is highly conserved.

Contents

Gene

Locus

On chromosome 8, FAM167A is positioned between c8orf12 (anti-sense) and BLK (anti-sense). [7] The exact locus of FAM167A is 8p23-22 and spans from 11,278,972 to 11,332,224, a total of 53,253 base pairs. The promoter spans from 11324145 to 11324476 on the negative strand, thereby the first basepair is actually on 11324476. There are no human isoforms found. FAM167A locus.jpg

Aliases

Family with Sequence Similarity 167, Member A is also known as FAM167A, c8orf13, or D8S265. [8]

Homology

Paralogs

FAM167A has one paralog, FAM167B also known as c1orf90. [9] FAM167B is located at 1p35.1 on the plus strand and is composed of 163 amino acids and also contains DUF3259. [10]

Orthologs

A chart showing divergence and sequence identity Sequence identity v. Divergence chart.jpg
A chart showing divergence and sequence identity

FAM167A has orthologs in 82 organisms and is conserved across chimpanzees, dog, cow, mouse, chicken, rat, frogs, and zebrafish. [11] [12]

SpeciesSpecies Common NameNCBI Accession Number (Protein)Amino Acid LengthProtein IdentityDivergence date from Humans (million years ago)
Homo SapiensHumanNP_444509214100%0
Pan TroglodytesChimpanzeeXP_00113912221499%6.3
Macaca FascicularisMacaqueXP_005562638.121496%29
Neterocephalus GlaberNaked mole ratXP_00484850921484%92.3
Felis CatusCatXP_00398489020980%94.2
Equus CaballusHorseXP_00149796820380%94.2
Alligator SinensisChinese AlligatorXP_00602821521170%296
Anolis CarolinensisCarolina AnoleXP_00322798421564%296
Danio RerioZebrafishNP_102072120459%400.1
Latimeria ChalumnaeAfrican CoelacanthXP_0599457014843%414.9
Ciona IntestinalisSea SquirtXP_00212342125527%722.5

As shown in the table above, FAM167A is highly conserved across many orthologs of various divergence dates. The exact degree of conservation follows what is expected due to the evolutionary track of a protein.

Protein

Primary sequence

The gene that encodes FAM167A is 214 amino acids in length. The molecular weight in humans of the FAM167A protein is 24.2 kdal and the isoelectric point is measured to be 5.887 in Homo sapiens. [13] Mouse and chicken orthologs were shown to have a molecular weight of ± 0.5 kdal and isoelectric points were ±0.6.

Variants

Alternative splices of FAM167A Aceview.jpg
Alternative splices of FAM167A

As per the results on AceView, shown right, the FAM167A gene contains 13 introns. The gene is also "well expressed" at 1.2 times the average gene. Transcription produces 9 different mRNAs, 8 of which are alternatively spliced and 1 unspliced form. 4 of the spliced proteins, which includes 2 isoforms, are considered to be good while the remaining five are partial or not good proteins. [14]

Secondary structure

FAM167A has a leucine zipper as part of its secondary structure as noted by the four heptad leucine repeat regions shown in SAPS. The leucine zipper is a portion of the DUF domain. Predictions of the secondary structure for the FAM167A protein are mostly that it is made of alpha helices and coiled coils, which would be reasonable as there is a coiled coil domain. The C-terminus end of DUF3259 is generally agreed upon in the PELE program to be a region of potential beta sheets and coiled coils. Using PELE, there is some consensus amongst the eight different outputs given as to the general secondary structure of the protein. There are no transmembrane domains as predicted on the FAM167A protein.

Interacting proteins

Web of interactions between FAM167A and other proteins Int web.jpg
Web of interactions between FAM167A and other proteins

Using the MINT, STRING, and IntAct tools on Genecards, the sources have a consensus on the interactions between FAM167A and BANK1 as well as the BLK gene. [15] These proteins are already known to interact with FAM167A in the development of several diseases such as Sjogren's disease and systemic sclerosis. In both the case of BANK1 and BLK, there is literature to back up the possible connections and interactions between the two proteins in disease development.

Post-translational modification

No glycosylation sites have been found, as searched using tools on Expasy.org. There was a site for serine phosphorylation on both the human and mouse proteins and two for tyrosine phosphorylation, amino acids 147, 159, and 170 respectfully. Phosphorylation sites are used for various regulatory functions such as enzyme inhibition, protein-protein interactions, and protein degradation.

Function

Human tissue expression Expression of FAM167A.jpg
Human tissue expression

Micro arrays show that FAM167A has varied expression in reactions to cancers, but no information regarding the exact function of FAM167A can be drawn from these micro arrays. FAM167A has ubiquitously low expression in all tissues types throughout the body. [16] In mouse it has a higher expression in the skin, B-cells, and spleen, but the same low expression in all other cell types. [17]

Clinical significance

SNPs in the regions between FAM167A and the BLK gene have been associated with the development of Sjogren's syndrome in a Han Chinese population, [18] as well as in a Scandinavian population. [19] The FAM167A-BLK region has also been linked to systemic sclerosis by comparing functional variants in the C8orf13-BLK locus in a Caucasian population. Results of the study confirms the C8orf13-BLK locus as a systemic sclerosis risk locus, strongest effects were observed in the interactions between that locus and BANK1. [20]

Related Research Articles

<span class="mw-page-title-main">Proline-rich 12</span> Protein-coding gene in the species Homo sapiens

Proline-rich 12 (PRR12) is a protein of unknown function encoded by the gene PRR12.

<span class="mw-page-title-main">FAM46C</span> Protein-coding gene in the species Homo sapiens

Protein FAM46C also known as family with sequence similarity 46, member C is a protein that, in humans, is encoded by the FAM46C gene at locus 1p12 spanning base pairs from 118,148,556 to 118,171,011.

<span class="mw-page-title-main">FAM203B</span> Protein-coding gene in the species Homo sapiens

Family with Sequence Similarity 203, Member B (FAM203B) is a protein encoded by the FAM203B gene (8q24.3) in humans. While FAM203B is only found in humans and possibly non-human primates, its paralog, FAM203A, is highly conserved. The FAM203B protein contains two conserved domains of unknown function, DUF383 and DUF384, and no transmembrane domains. This protein has no known function yet, although the homolog of FAM203A in Caenorhabditis elegans (Y54H5A.2) is thought to help regulate the actin cytoskeleton.

<span class="mw-page-title-main">CFAP206</span> Protein-coding gene in the species Homo sapiens

Cilia And Flagella Associated Protein 206 (CFAP206) is a gene that in humans encodes a protein “DUF3508”. This protein has a function that is not currently very well understood. Other known aliases are “dJ382I10.1, UPF0704 Protein C6orf165.” In humans, the gene coding sequence is 56,501 base pairs long, with an mRNA of 2,215 base pairs, and a protein sequence of 622 amino acids. The C6orf165 gene is conserved in chimpanzee, rhesus monkey, dog, cow, mouse, rat, chicken, zebrafish, mosquito, frog, and more C6orf165 is rarely expressed in humans, with relatively high expression in brain, lungs (trachea) and testis. The molecular weight of UPF0704 is 71,193 Da and the PI is 6.38

C5orf34 is a protein that in humans is encoded by the C5orf34 gene (5p12).

<span class="mw-page-title-main">C1orf74</span> Protein-coding gene in the species Homo sapiens

UPF0739 protein C1orf74 is a protein that in humans is encoded by the C1orf74 gene.

<span class="mw-page-title-main">PRR29</span> Protein-coding gene in the species Homo sapiens

PRR29 is a protein encoded by the PRR29 gene located in humans on chromosome 17 at 17q23.

<span class="mw-page-title-main">Fam221b</span> Protein-coding gene in the species Mus musculus

FAM221B is a protein that in humans is encoded by the FAM221B gene . FAM221B is also known by the alias C9orf128, is expressed at low level, and is defined by 17 GenBank accessions . It is predicted to function in transcription regulation as a transcription factor.

<span class="mw-page-title-main">C12orf60</span> Protein-coding gene in humans

Uncharacterized protein C12orf60 is a protein that in humans is encoded by the C12orf60 gene. The gene is also known as LOC144608 or MGC47869. The protein lacks transmembrane domains and helices, but it is rich in alpha-helices. It is predicted to localize in the nucleus.

<span class="mw-page-title-main">C21orf58</span> Protein-coding gene in the species Homo sapiens

Chromosome 21 Open Reading Frame 58 (C21orf58) is a protein that in humans is encoded by the C21orf58 gene.

<span class="mw-page-title-main">C9orf25</span> Protein-coding gene in the species Homo sapiens

Chromosome 9 open reading frame 25 (C9orf25) is a domain that encodes the FAM219A gene. The terms FAM219A and C9orf25 are aliases and can be used interchangeably. The function of this gene is not yet completely understood.

<span class="mw-page-title-main">C19orf44</span> Mammalian protein found in Homo sapiens

Chromosome 19 open reading frame 44 is a protein that in humans is encoded by the C19orf44 gene. C19orf44 is an uncharacterized protein with an unknown function in humans. C19orf44 is non-limiting implying that the protein exists in other species besides human. The protein contains one domain of unknown function (DUF) that is highly conserved throughout its orthologs. This protein is most highly expressed in the testis and ovary, but also has significant expression in the thyroid and parathyroid. Other names for this protein include: LOC84167.

<span class="mw-page-title-main">C4orf51</span> Protein-coding gene in the species Homo sapiens

Chromosome 4 open reading frame 51 (C4orf51) is a protein which in humans is encoded by the C4orf51 gene.

<span class="mw-page-title-main">CFAP299</span> Protein-coding gene in the species Homo sapiens

Cilia- and flagella-associated protein 299 (CFAP299), is a protein that in humans is encoded by the CFAP299 gene. CFAP299 is predicted to play a role in spermatogenesis and cell apoptosis.

<span class="mw-page-title-main">C9orf50</span> Protein-coding gene in the species Homo sapiens

Chromosome 9 open reading frame 50 is a protein that in humans is encoded by the C9orf50 gene. C9orf50 has one other known alias, FLJ35803. In humans the gene coding sequence is 10,051 base pairs long, transcribing an mRNA of 1,624 bases that encodes a 431 amino acid protein.

<span class="mw-page-title-main">SMCO3</span> Protein-coding gene in the species Homo sapiens

Single-pass membrane and coiled-coil domain-containing protein 3 is a protein that is encoded in humans by the SMCO3 gene.

<span class="mw-page-title-main">C20orf202</span>

C20orf202 is a protein that in humans is encoded by the C20orf202 gene. In humans, this gene encodes for a nuclear protein that is primarily expressed in the lung and placenta.

<span class="mw-page-title-main">FAM214B</span> Protein-coding gene in the species Homo sapiens

The FAM214B, also known as protein family with sequence similarity 214, B (FAM214B) is a protein that, in humans, is encoded by the FAM214B gene located on the human chromosome 9. The protein has 538 amino acids. The gene contain 9 exon. There has been studies that there are low expression of this gene in patients with major depression disorder. In most organisms such as mammals, amphibians, reptiles, and birds, there are high levels of gene expression in the bone marrow and blood. For humans in fetal development, FAM214B is mostly expressed in the brains and bone marrow.

<span class="mw-page-title-main">FAM98C</span> Gene

Family with sequence 98, member C or FAM98C is a gene that encodes for FAM98C has two aliases FLJ44669 and hypothetical protein LOC147965. FAM98C has two paralogs in humans FAM98A and FAM98B. FAM98C can be characterized for being a Leucine-rich protein. The function of FAM98C is still not defined. FAM98C has orthologs in mammals, reptiles, and amphibians and has a distant orhtologs in Rhinatrema bivittatum and Nanorana parkeri.

<span class="mw-page-title-main">FAM166C</span>

Family with Sequence Similarity 166, member C (FAM166C), is a protein encoded by the FAM166C gene. The protein FAM166C is localized in the nucleus. It has a calculated molecular weight of 23.29 kDa. It also contains DUF2475, a protein of unknown function from amino acid 19–85. The FAM166C protein is nominally expressed in the testis, stomach, and thyroid.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000154319 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000035095 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. GeneCard for FAM167A
  6. Marchler-Bauer A et al. (2013) (2013). "CDD: conserved domains and protein three-dimensional structure". Nucleic Acids Res. 41 (Database issue). D1:D384-52. doi:10.1093/nar/gks1243. PMC   3531192 . PMID   23197659.
  7. "FAM167A - View on Genome - Epigenomics - NCBI". www.ncbi.nlm.nih.gov. Archived from the original on 2014-05-08.
  8. National Human Genome Research Institute. "FAM167A Symbol Report".
  9. GeneCard for FAM167A
  10. "Protein FAM167B [Homo sapiens] - Protein - NCBI".
  11. "Protein FAM167A [Homo sapiens] - Protein - NCBI".
  12. "FAM167A family with sequence similarity 167 member A [Homo sapiens (human)] - Gene - NCBI".
  13. Brendel V, Bucher P, Nourbakhsh IR, Blaisdell BE, Karlin S (March 1992). "Methods and algorithms for statistical analysis of protein sequences". Proceedings of the National Academy of Sciences of the United States of America. 89 (6): 2002–6. Bibcode:1992PNAS...89.2002B. doi: 10.1073/pnas.89.6.2002 . PMC   48584 . PMID   1549558.
  14. AceView NCBI. "Homo sapiens gene FAM167A, encoding family with sequence similarity 167, member A."
  15. STRING. "Evidence view of FAM167A interacting genes".
  16. BioGPS. "SymAtlas Human tissue expression".
  17. BioGPS. "Tissue expression in house mouse".
  18. Sun F, Xu J, Wu Z, Li P, Chen H, Su J, You X, Li M, Zhao Y, Tian X, Li Y, Zhang F (2013). "Polymorphisms in the FAM167A-BLK, but not BANK1, are associated with primary Sjögren's syndrome in a Han Chinese population". Clinical and Experimental Rheumatology. 31 (5): 704–10. PMID   23899688.
  19. Nordmark G, Kristjansdottir G, Theander E, Appel S, Eriksson P, Vasaitis L, Kvarnström M, Delaleu N, Lundmark P, Lundmark A, Sjöwall C, Brun JG, Jonsson MV, Harboe E, Gøransson LG, Johnsen SJ, Söderkvist P, Eloranta ML, Alm G, Baecklund E, Wahren-Herlenius M, Omdal R, Rönnblom L, Jonsson R, Syvänen AC (March 2011). "Association of EBF1, FAM167A(C8orf13)-BLK and TNFSF4 gene variants with primary Sjögren's syndrome". Genes and Immunity. 12 (2): 100–9. doi:10.1038/gene.2010.44. PMID   20861858.
  20. Coustet B, Dieudé P, Guedj M, Bouaziz M, Avouac J, Ruiz B, Hachulla E, Diot E, Cracowski JL, Tiev K, Sibilia J, Mouthon L, Frances C, Amoura Z, Carpentier P, Cosnes A, Meyer O, Kahan A, Boileau C, Chiocchia G, Allanore Y (July 2011). "C8orf13-BLK is a genetic risk locus for systemic sclerosis and has additive effects with BANK1: results from a large french cohort and meta-analysis". Arthritis and Rheumatism. 63 (7): 2091–6. doi: 10.1002/art.30379 . PMID   21480188.