FLARM

Last updated
FLARM Logo FLARM logo.png
FLARM Logo

FLARM is a proprietary electronic system used to selectively alert pilots to potential collisions between aircraft. It is not formally an implementation of ADS-B, as it is optimized for the specific needs of light aircraft, not for long-range communication or ATC interaction. FLARM is a portmanteau of "flight" and "alarm". The installation of all physical FLARM devices is approved as a "Standard Change", [1] and the PowerFLARM Core specifically as a "Minor Change" by the European Union Aviation Safety Agency; [2] and in addition the Minor Change also approves the PowerFLARM Core for its IFR and at night. [3]

Contents

Operation

FLARM in action: An approach from the front left (LED on compass rose) and slightly above (LED "above") your own altitude is displayed. The slot for inserting the microSD card can be seen to the right. FLARM equipment.JPG
FLARM in action: An approach from the front left (LED on compass rose) and slightly above (LED "above") your own altitude is displayed. The slot for inserting the microSD card can be seen to the right.

FLARM obtains its position and altitude readings from an internal GPS and a barometric sensor and then broadcasts this together with forecast data about the future 3D flight track. At the same time, its receiver listens for other FLARM devices within range and processes the information received. Advanced motion prediction algorithms predict potential conflicts for up to 50 other aircraft and alert the pilot using visual and aural warnings. FLARM has an integrated obstacle collision warning system together with an obstacle database. The database includes both point and segmented obstacles, such as split power lines and cableways.

Unlike conventional transponders, FLARM has low power consumption and is relatively inexpensive to purchase and install. Furthermore, conventional Airborne Collision Avoidance Systems (ACAS) are not effective in preventing light aircraft from colliding with each other as light aircraft can be close to each other without danger of collision. ACAS would issue continuous and unnecessary warnings about all aircraft in the vicinity, whereas FLARM only issues selective warnings about collision risks.

Appraisal and attention

FLARM Technology and the inventors of FLARM have won several awards. [4] [5] [6] [7] The Swiss Office of Civil Aviation (FOCA) also published [8] in Dec 2010: "The rapid distribution of such systems only a few months after their introduction was not accomplished through regulatory measures, but rather on a voluntary basis and as a result of the wish on the part of the involved players to contribute towards the reduction of collision risk. The FOCA recommends that glider tow planes and helicopters that operate in lower airspace should also use collision warning systems."

In addition, FLARM is mandatory on gliders in several countries including France, [9] [ citation needed ] and the Soaring Society of America (SSA) strongly recommends FLARM in lieu of ADS-B Out. [10]

Versions

Versions are sold for use in light aircraft, helicopters, and gliders. Newer PowerFLARM models extend the FLARM range to over 10 km. They also have an integrated ADS-B and transponder Mode-C/S receiver, making it possible to also avoid mid-air collisions with large aircraft.

Newer devices can also act as authorized flight recorders by producing files in the IGC format defined by the FAI Gliding Commission. All FLARM devices can be connected to FLARM displays or compatible avionics (EFIS, moving map, etc.) to give visual and audio warnings and also to show the intruder's position on the map. Licensed manufacturers produce integrated FLARM devices in different avionics products. FLARM devices can issue spoken warnings similar to TCAS.

Hardware

LX FLARM Red Box remote transceiver unit LXFlarm RedBox Hardware.png
LX FLARM Red Box remote transceiver unit

A typical FLARM system consists of the following hardware components:

Protocol and criticism

The FLARM radio protocol has always been encrypted, which is reasoned by the manufacturer to ensure the integrity of the system and also because of privacy and security considerations. Version 4 used in 2008 and Version 6 used in 2015 were reverse engineered despite its encryption. [11] [12] However, FLARM changes the protocol on a regular basis to add functionality and protect security[ citation needed ].

The decryption of the FLARM radio protocol might be illegal, especially in EU countries. It may be argued, however,[ citation needed ] that traffic advisory data may legally be decrypted by third parties solely for the purpose of nearby traffic advisory and collision avoidance, which is the intended use of the system.

The radio protocol has been criticised for its proprietary encryption, including a petition encouraging a change to an open protocol. [13] It has been argued that encryption increases processing time and contradicts the goal to increase aviation safety due to a closed monopoly market, because an open protocol could enable third-party manufacturers to develop compatible devices, spreading the use of interoperable traffic advisory systems. FLARM Technology opposed these claims as published on the petition page and published a white paper [14] explaining the design of the system. They offer the technology to third parties, [15] [16] which requires the implementation of the OEM circuit board in compatible devices. Radio protocol specifications and encryption keys are not shared to third-party manufacturers.

While the FLARM serial data protocol is public, the prediction engine of FLARM is patented by Onera (France) [17] and proprietary. It is licensed to manufacturers by FLARM Technology in Switzerland. The patent expired in 2019. [17]

Company

FLARM was founded by Urs Rothacher and Andrea Schlapbach in 2003, who were later joined by Urban Mäder in 2004. [18] First sales were made in early 2004. Currently there are nearly 30,000 FLARM-compatible devices (around half of them produced by FLARM Technology, the rest by licensed manufacturers who have now overtaken FLARM in current sales) in use mainly in Switzerland, Germany, France, Austria, Italy, UK, the Benelux, Scandinavia, Hungary, Israel, Australia, New Zealand and South Africa.

FLARM's technology is also used in ground-based vehicles including vehicles used in surface-mining. These products are designed and produced by the Swiss company SAFEmine, now owned by Swedish Hexagon Group.

Related Research Articles

<span class="mw-page-title-main">Avionics</span> Electronic systems used on aircraft

Avionics are the electronic systems used on aircraft. Avionic systems include communications, navigation, the display and management of multiple systems, and the hundreds of systems that are fitted to aircraft to perform individual functions. These can be as simple as a searchlight for a police helicopter or as complicated as the tactical system for an airborne early warning platform.

Aviation is the design, development, production, operation, and use of aircraft, especially heavier-than-air aircraft. Articles related to aviation include:

<span class="mw-page-title-main">Ground proximity warning system</span> Alert system meant to prevent pilots from flying or taxiing into obstacles

A ground proximity warning system (GPWS) is a system designed to alert pilots if their aircraft is in immediate danger of flying into the ground or an obstacle. The United States Federal Aviation Administration (FAA) defines GPWS as a type of terrain awareness and warning system (TAWS). More advanced systems, introduced in 1996, are known as enhanced ground proximity warning systems (EGPWS), a modern type of TAWS.

<span class="mw-page-title-main">Traffic collision avoidance system</span> Aircraft collision avoidance system

A traffic alert and collision avoidance system, is an aircraft collision avoidance system designed to reduce the incidence of mid-air collision (MAC) between aircraft. It monitors the airspace around an aircraft for other aircraft equipped with a corresponding active transponder, independent of air traffic control, and warns pilots of the presence of other transponder-equipped aircraft which may present a threat of MAC. It is a type of airborne collision avoidance system mandated by the International Civil Aviation Organization to be fitted to all aircraft with a maximum take-off mass (MTOM) of over 5,700 kg (12,600 lb) or authorized to carry more than 19 passengers. CFR 14, Ch I, part 135 requires that TCAS I be installed for aircraft with 10-30 passengers and TCAS II for aircraft with more than 30 passengers. ACAS/TCAS is based on secondary surveillance radar (SSR) transponder signals, but operates independently of ground-based equipment to provide advice to the pilot on potentially conflicting aircraft.

A vehicle bus is a specialized internal communications network that interconnects components inside a vehicle. In electronics, a bus is simply a device that connects multiple electrical or electronic devices together. Special requirements for vehicle control such as assurance of message delivery, of non-conflicting messages, of minimum time of delivery, of low cost, and of EMF noise resilience, as well as redundant routing and other characteristics mandate the use of less common networking protocols. Protocols include Controller Area Network (CAN), Local Interconnect Network (LIN) and others. Conventional computer networking technologies are rarely used, except in aircraft, where implementations of the ARINC 664 such as the Avionics Full-Duplex Switched Ethernet are used. Aircraft that use AFDX include the B787, the A400M and the A380. Trains commonly use Ethernet Consist Network (ECN). All cars sold in the United States since 1996 are required to have an On-Board Diagnostics connector, for access to the car's electronic controllers.

HomePlug is the family name for various power line communications specifications under the HomePlug designation, each with unique capabilities and compatibility with other HomePlug specifications.

<span class="mw-page-title-main">Electronic flight instrument system</span> Display system in an aircrafts cockpit which displays flight information electronically

In aviation, an electronic flight instrument system (EFIS) is a flight instrument display system in an aircraft cockpit that displays flight data electronically rather than electromechanically. An EFIS normally consists of a primary flight display (PFD), multi-function display (MFD), and an engine indicating and crew alerting system (EICAS) display. Early EFIS models used cathode ray tube (CRT) displays, but liquid crystal displays (LCD) are now more common. The complex electromechanical attitude director indicator (ADI) and horizontal situation indicator (HSI) were the first candidates for replacement by EFIS. Now, however, few flight deck instruments cannot be replaced by an electronic display.

<span class="mw-page-title-main">Airborne collision avoidance system</span> Avionics system to avoid aircraft collision

An airborne collision avoidance system operates independently of ground-based equipment and air traffic control in warning pilots of the presence of other aircraft that may present a threat of collision. If the risk of collision is imminent, the system recommends a maneuver that will reduce the risk of collision. ACAS standards and recommended practices are mainly defined in annex 10, volume IV, of the Convention on International Civil Aviation. Much of the technology being applied to both military and general aviation today has been undergoing development by NASA and other partners since the 1980s.

<span class="mw-page-title-main">Airport surveillance radar</span> Radar system

An airport surveillance radar (ASR) is a radar system used at airports to detect and display the presence and position of aircraft in the terminal area, the airspace around airports. It is the main air traffic control system for the airspace around airports. At large airports it typically controls traffic within a radius of 60 miles (96 km) of the airport below an elevation of 25,000 feet. The sophisticated systems at large airports consist of two different radar systems, the primary and secondary surveillance radar. The primary radar typically consists of a large rotating parabolic antenna dish that sweeps a vertical fan-shaped beam of microwaves around the airspace surrounding the airport. It detects the position and range of aircraft by microwaves reflected back to the antenna from the aircraft's surface. The secondary surveillance radar consists of a second rotating antenna, often mounted on the primary antenna, which interrogates the transponders of aircraft, which transmits a radio signal back containing the aircraft's identification, barometric altitude, and an emergency status code, which is displayed on the radar screen next to the return from the primary radar.

Traffic signal preemption is a system that allows an operator to override the normal operation of traffic lights. The most common use of these systems manipulates traffic signals in the path of an emergency vehicle, halting conflicting traffic and allowing the emergency vehicle right-of-way, thereby reducing response times and enhancing traffic safety. Signal preemption can also be used on tram, light-rail and bus rapid transit systems, to allow public transportation priority access through intersections, and by railroad systems at crossings to prevent collisions.

Automatic Independent Surveillance – Privacy (AIS-P) is a data packet protocol for the TailLight system of aircraft Traffic Collision Avoidance System (TCAS), wherein a single Mode S 64 microsecond message is transmitted by an aircraft ATCRBS or Mode S transponder, and received by aircraft and Air Traffic Control on the ground. This is an augmentation to aircraft transponders, which report aircraft position and velocity in such a way as to minimize interference with any other avionics system, maximize the possible number of participating aircraft, while not relying on any equipment on the ground, and protecting aircraft from potential attack. AIS-P and ADS-B are competing protocols for aircraft based surveillance of traffic, a replacement technology for Mode S radar and TCAS.

A portable collision avoidance system (PCAS) is an aircraft collision avoidance system similar in function to traffic collision avoidance system (TCAS). TCAS is the industry standard for commercial collision avoidance systems but PCAS is gaining recognition as an effective means of collision avoidance for general aviation and is in use the world over by independent pilots in personally owned or rented light aircraft as well as by flight schools and flying clubs. Its main competitor is FLARM.

The Capstone Program was a United States government-funded aviation safety program for the state of Alaska, primarily focusing on rural areas of the state. This joint effort – between the Federal Aviation Administration (FAA), the Alaska Pilot's Association, commercial operators, the University of Alaska, MITRE Corporation, some avionics manufacturers and individual pilots – cut the accident rate in the eastern part of Alaska by around 40%.

Avidyne Corporation is an avionics company based in Melbourne, Florida. Avidyne is developer of Integrated Avionics Systems, multi-function displays, and traffic advisory systems for light general aviation (GA) aircraft. Headquartered in Melbourne, Florida, the company has facilities in Melbourne, as well as Concord, Massachusetts; Columbus, Ohio; and Boulder, Colorado.

The aviation transponder interrogation modes are the standard formats of pulsed sequences from an interrogating Secondary Surveillance Radar (SSR) or similar Automatic Dependent Surveillance-Broadcast (ADS-B) system. The reply format is usually referred to as a "code" from a transponder, which is used to determine detailed information from a suitably equipped aircraft.

<span class="mw-page-title-main">Automatic Dependent Surveillance–Broadcast</span> Aircraft surveillance technology

Automatic Dependent Surveillance–Broadcast (ADS-B) is an aviation surveillance technology and form of Electronic Conspicuity in which an aircraft determines its position via satellite navigation or other sensors and periodically broadcasts its position and other related data, enabling it to be tracked. The information can be received by air traffic control ground-based or satellite-based receivers as a replacement for secondary surveillance radar (SSR). Unlike SSR, ADS-B does not require an interrogation signal from the ground or from other aircraft to activate its transmissions. ADS-B can also receive point-to-point by other nearby equipped "ADS-B In" equipped aircraft to provide traffic situational awareness and support self-separation. ADS-B is "automatic" in that it requires no pilot or external input to trigger its transmissions. It is "dependent" in that it depends on data from the aircraft's navigation system to provide the transmitted data.

The anti-collision device (ACD) is a form of automatic train protection used on Indian Railways.

<span class="mw-page-title-main">Pipistrel Virus</span> Type of aircraft

The Pipistrel Virus is a two-seat, single engine light aircraft manufactured by Pipistrel in Slovenia and Italy and sold as an ultralight, homebuilt kit, or light-sport aircraft.

GPS aircraft tracking is a means of tracking the position of an aircraft fitted with a satellite navigation device. By communication with navigation satellites, detailed real-time data on flight variables can be passed to a server on the ground. This server stores the flight data, which can then be transmitted via telecommunications networks to organizations wishing to interpret it.

<span class="mw-page-title-main">Flightradar24</span> Flight tracking online service

Flightradar24 is a Swedish Internet-based service that shows real-time aircraft flight tracking information on a map. It includes flight tracking information, origins and destinations, flight numbers, aircraft types, positions, altitudes, headings and speeds. It can also show time-lapse replays of previous tracks and historical flight data by airline, aircraft, aircraft type, area, or airport. It aggregates data from multiple sources, but, outside of the United States, mostly from crowdsourced information gathered by volunteers with ADS-B receivers and from satellite-based ADS-B receivers.

References

  1. CS-STAN Issue 2
  2. PowerFLARM MCA approved by EASA
  3. EASA Minor Change Approval
  4. FLARM wins aerokurier Innovation Award
  5. FLARM awarded at AERO 2012
  6. FLARM wins Prince Alvaro de Orleans Borbon Prize for technical innovation in air sports
  7. OSTIV-Prize Archived 2016-02-01 at the Wayback Machine
  8. Safety recommendation
  9. FLARM mandatory in France
  10. Soaring Society of America (SSA) strongly recommends FLARM in lieu of ADS-B Out
  11. FLARM PROTOCOL VERSION 4 (2008)
  12. FLARM PROTOCOL VERSION 6 (2015)
  13. "Petition gegen FLARM-Verschlüsselung". aerokurier.de (in German). 2015-05-28. Retrieved 2017-06-15.
  14. System Design and Interoperability
  15. OEM Module
  16. FLARM Product Selector
  17. 1 2 USpatent 6438492,Claude Le Tallec&Boris Gravier,"Device for improving the security of aircraft in visual flight regime",issued August 20, 2002, assigned to Onera
  18. FLARM Company History