FX.25 Forward Error Correction

Last updated

FX.25 is a protocol extension to the AX.25 Link Layer Protocol. FX.25 provides a Forward Error Correction (FEC) capability while maintaining legacy compatibility with non-FEC equipment. FX.25 was created by the Stensat Group in 2005, and was presented as a technical paper at the 2006 TAPR Digital Communications Conference in Tucson, AZ.

Contents

Overview

FX.25 is intended to complement the AX.25 protocol, not replace it. It provides an encapsulation mechanism that does not alter the AX.25 data or functionalities. An error correction capability is introduced at the bottom of Layer 2 in the OSI model.

The AX.25 Link Layer Protocol is extensively used in amateur radio communications. The packets are validated by a 16-bit CRC, and are discarded if one or more errors are detected. In many cases, such as space-to-earth telemetry, the packets are broadcast unidirectionally. No back-channel may be available to request retransmission of errored elements. Consequently, AX.25 links are inherently intolerant of errors.

The FX.25 protocol extension provides an error correction "wrapper" around the AX.25 packet, allowing for removal of errors at the receiving end. Data fields have been carefully chosen to allow reception of the AX.25 packet data within an FX.25 frame by a non-FEC decoder.

Technical Implementation

A composite FX.25 entity is called a "frame," distinguishing it from the AX.25 "packet" contained within. The FX.25 frame contains the following elements:
- Preamble
- Correlation Tag
- AX.25 Packet
- - AX.25 Packet Start
- - AX.25 Packet Body
- - AX.25 Packet Frame Check Sequence (FCS)
- - AX.25 Packet End
- Pad for bit-to-byte alignment
- FEC Check Symbols
- Postamble

FX-25 block med.png

The "FEC Codeblock" contains all elements except the Preamble, Correlation Tag, and Postamble. These three elements exist outside of the correction-space for the FEC algorithm. The Preamble and Postamble blocks are variable length, and are included to account for delays typically found in radio links - transmitter "key" to stable operation, receiver squelch latency, etc. The Correlation Tag is a Gold code, and contains inherent error tolerance. This is necessary to provide a "start of frame" marker without requiring a dependency on the FEC capability.

The FEC frame currently implements Reed Solomon error correction algorithms, but is not restricted to these.

Performance

Performance improvement will be a function of AX.25 packet size combined with the noise characteristics of the transmission channel. Initial performance testing involved transmission of 61 FX.25 frames over an interval of about 15 minutes.
- 9 frames were received without errors
- 19 frames were received with correctable errors
- 33 frames were received with uncorrectable errors

15% of the AX.25 packets [9/61] were decodable without the FEC capability
46% of the AX.25 packets [(9+19)/61] were decodable with the FEC capability

Related Research Articles

<span class="mw-page-title-main">Error detection and correction</span> Techniques that enable reliable delivery of digital data over unreliable communication channels

In information theory and coding theory with applications in computer science and telecommunication, error detection and correction (EDAC) or error control are techniques that enable reliable delivery of digital data over unreliable communication channels. Many communication channels are subject to channel noise, and thus errors may be introduced during transmission from the source to a receiver. Error detection techniques allow detecting such errors, while error correction enables reconstruction of the original data in many cases.

In computer networking, the maximum transmission unit (MTU) is the size of the largest protocol data unit (PDU) that can be communicated in a single network layer transaction. The MTU relates to, but is not identical to the maximum frame size that can be transported on the data link layer, e.g., Ethernet frame.

In computer networking, Point-to-Point Protocol (PPP) is a data link layer communication protocol between two routers directly without any host or any other networking in between. It can provide loop detection, authentication, transmission encryption, and data compression.

<span class="mw-page-title-main">Packet radio</span> Form of amateur radio data communications using the AX25 protocol

In digital radio, packet radio is the application of packet switching techniques to digital radio communications. Packet radio uses a packet switching protocol as opposed to circuit switching or message switching protocols to transmit digital data via a radio communication link.

<span class="mw-page-title-main">Frame Relay</span> Wide area network technology

Frame Relay is a standardized wide area network (WAN) technology that specifies the physical and data link layers of digital telecommunications channels using a packet switching methodology. Originally designed for transport across Integrated Services Digital Network (ISDN) infrastructure, it may be used today in the context of many other network interfaces.

Data communication, including data transmission and data reception, is the transfer of data, transmitted and received over a point-to-point or point-to-multipoint communication channel. Examples of such channels are copper wires, optical fibers, wireless communication using radio spectrum, storage media and computer buses. The data are represented as an electromagnetic signal, such as an electrical voltage, radiowave, microwave, or infrared signal.

In telecommunications and computer networking, a network packet is a formatted unit of data carried by a packet-switched network. A packet consists of control information and user data; the latter is also known as the payload. Control information provides data for delivering the payload. Typically, control information is found in packet headers and trailers.

The data link layer, or layer 2, is the second layer of the seven-layer OSI model of computer networking. This layer is the protocol layer that transfers data between nodes on a network segment across the physical layer. The data link layer provides the functional and procedural means to transfer data between network entities and may also provide the means to detect and possibly correct errors that can occur in the physical layer.

<span class="mw-page-title-main">Medium access control</span> Service layer in IEEE 802 network standards

In IEEE 802 LAN/MAN standards, the medium access control (MAC), also called media access control, is the layer that controls the hardware responsible for interaction with the wired or wireless transmission medium. The MAC sublayer and the logical link control (LLC) sublayer together make up the data link layer. The LLC provides flow control and multiplexing for the logical link, while the MAC provides flow control and multiplexing for the transmission medium.

AX.25 is a data link layer protocol originally derived from layer 2 of the X.25 protocol suite and designed for use by amateur radio operators. It is used extensively on amateur packet radio networks.

Q15X25 is a communications protocol for sending data over a radio link. It was designed by amateur radio operator Pawel Jalocha, SP9VRC, to be an open communications standard. Like all amateur radio communications modes, this protocol uses open transmissions which can be received and decoded by anyone with similar equipment. Q15X25 is a form of packet radio. It can be used to interconnect local VHF AX.25 packet networks over transcontinental distances. Anyone can design or adapt the open-source software to develop their own Q15X25 system.

In computer networking, jumbo frames are Ethernet frames with more than 1500 bytes of payload, the limit set by the IEEE 802.3 standard. The payload limit for jumbo frames is variable: while 9000 bytes is the most commonly used limit, smaller and larger limits exist. Many Gigabit Ethernet switches and Gigabit Ethernet network interface controllers and some Fast Ethernet switches and Fast Ethernet network interface cards can support jumbo frames.

Link Access Procedure for Modems (LAPM) is part of the V.42 error correction protocol for modems.

In computing, telecommunication, information theory, and coding theory, forward error correction (FEC) or channel coding is a technique used for controlling errors in data transmission over unreliable or noisy communication channels.

In data networking and transmission, 64b/66b is a line code that transforms 64-bit data to 66-bit line code to provide enough state changes to allow reasonable clock recovery and alignment of the data stream at the receiver. It was defined by the IEEE 802.3 working group as part of the IEEE 802.3ae-2002 amendment which introduced 10 Gbit/s Ethernet. At the time 64b/66b was deployed, it allowed 10 Gb Ethernet to be transmitted with the same lasers used by SONET OC-192, rather than requiring the 12.5 Gbit/s lasers that were not expected to be available for several years.

In computer networking, an Ethernet frame is a data link layer protocol data unit and uses the underlying Ethernet physical layer transport mechanisms. In other words, a data unit on an Ethernet link transports an Ethernet frame as its payload.

<span class="mw-page-title-main">Radio beacon</span> Radio transmitter to identify a location for navigation aid

In navigation, a radio beacon or radiobeacon is a kind of beacon, a device that marks a fixed location and allows direction-finding equipment to find relative bearing. But instead of employing visible light, radio beacons transmit electromagnetic radiation in the radio wave band. They are used for direction-finding systems on ships, aircraft and vehicles.

ATSC-M/H is a U.S. standard for mobile digital TV that allows TV broadcasts to be received by mobile devices.

<span class="mw-page-title-main">G.718</span> ITU-T Recommendation

G.718 is an ITU-T Recommendation embedded scalable speech and audio codec providing high quality narrowband speech over the lower bit rates and high quality wideband speech over the complete range of bit rates. In addition, G.718 is designed to be highly robust to frame erasures, thereby enhancing the speech quality when used in Internet Protocol (IP) transport applications on fixed, wireless and mobile networks. Despite its embedded nature, the codec also performs well with both narrowband and wideband generic audio signals. The codec has an embedded scalable structure, enabling maximum flexibility in the transport of voice packets through IP networks of today and in future media-aware networks. In addition, the embedded structure of G.718 will easily allow the codec to be extended to provide a superwideband and stereo capability through additional layers which are currently under development in ITU-T Study Group 16. The bitstream may be truncated at the decoder side or by any component of the communication system to instantaneously adjust the bit rate to the desired value without the need for out-of-band signalling. The encoder produces an embedded bitstream structured in five layers corresponding to the five available bit rates: 8, 12, 16, 24 & 32 kbit/s.

IL2P is a data link layer protocol originally derived from layer 2 of the X.25 protocol suite and designed for use by amateur radio operators. It is used exclusively on amateur packet radio networks.

References