Packet radio

Last updated
Terminal Node Controller 2400 baud packet radio modem Tnc2400-stardado.JPG
Terminal Node Controller 2400 baud packet radio modem

In digital radio, packet radio is the application of packet switching techniques to digital radio communications. Packet radio uses a packet switching protocol as opposed to circuit switching or message switching protocols to transmit digital data via a radio communication link.

Contents

Packet radio is frequently used by amateur radio operators. The AX.25 (Amateur X.25) protocol was derived from the X.25 data link layer protocol and adapted for amateur radio use. Every AX.25 packet includes the sender's amateur radio callsign, which satisfies the US FCC requirements for amateur radio station identification. AX.25 allows other stations to automatically repeat packets to extend the range of transmissions. It is possible for any packet station to act as a digipeater, linking distant stations with each other through ad hoc networks. This makes packet radio especially useful for emergency communications.

Packet radio can be used in mobile communications. Some mobile packet radio stations transmit their location periodically using the Automatic Packet Reporting System (APRS). If the APRS packet is received by an "igate" station, position reports and other messages can be routed to an internet server, and made accessible on a public web page. This allows amateur radio operators to track the locations of vehicles, hikers, high-altitude balloons, etc., along with telemetry and other messages around the world.

Some packet radio implementations also use dedicated point-to-point links such as TARPN. In cases such as this, new protocols have emerged such as Improved Layer 2 Protocol (IL2P) supporting forward error correction for noisy and weak signal links.

History

Earlier digital radio communications modes were telegraphy (using Morse code), teleprinter (using Baudot code) and facsimile.

Aloha and PRNET

Since radio circuits inherently possess a broadcast network topology (i.e., many or all nodes are connected to the network simultaneously), one of the first technical challenges faced in the implementation of packet radio networks was a means to control access to a shared communication channel to avoid collisions of signals. Professor Norman Abramson of the University of Hawaii led development of a packet radio network known as ALOHAnet and performed a number of experiments beginning in the 1970s to develop methods to arbitrate access to a shared radio channel by network nodes. This system operated on UHF frequencies at 9,600 baud. From this work the Aloha multiple access protocol was derived. Subsequent enhancements in channel access techniques made by Leonard Kleinrock et al. in 1975 would lead Robert Metcalfe to use carrier-sense multiple access (CSMA) protocols in the design of the now commonplace Ethernet local area network (LAN) technology.

Over 1973–76, DARPA created a packet radio network called PRNET in the San Francisco Bay area and conducted a series of experiments with SRI to verify the use of ARPANET (a precursor to the Internet) communications protocols (later known as IP) over packet radio links between mobile and fixed network nodes. [1] This system was quite advanced, as it made use of direct sequence spread spectrum (DSSS) modulation and forward error correction (FEC) techniques to provide 100 kbit/s and 400 kbit/s data channels. These experiments were generally considered to be successful, and also marked the first demonstration of Internetworking, as in these experiments data was routed between the ARPANET, PRNET, and SATNET (a satellite packet radio network) networks. Throughout the 1970s and 1980s, DARPA operated a number of terrestrial and satellite packet radio networks connected to the ARPANET at various military and government installations.

Amateur Packet Radio and the AMPRNet

Amateur radio operators began experimenting with packet radio in 1978, when—after obtaining authorization from the Canadian government—Robert Rouleau, VE2PY; Bram Frank, VE2BFH; Norm Pearl, VE2BQS; and Jacques Orsali, VE2EHP [2] of the Montreal Amateur Radio Club Montreal, Quebec, began experimenting with transmitting ASCII encoded data over VHF amateur radio frequencies using homebuilt equipment. [3] In 1980, Doug Lockhart VE7APU, and the Vancouver Area Digital Communications Group (VADCG) in Vancouver, British Columbia began producing standardized equipment (Terminal Node Controllers) in quantity for use in amateur packet radio networks. In 2003, Rouleau was inducted into CQ Amateur Radio magazine's hall of fame for his work on the Montreal Protocol in 1978. [4]

Not long after this activity began in Canada, amateurs in the US became interested in packet radio. In 1980, the United States Federal Communications Commission (FCC) granted authorization for United States amateurs to transmit ASCII codes via amateur radio. [5] Repeaters may be designed for amateur packet radio, these are dubbed "digipeaters". The first known amateur packet radio activity in the US occurred in San Francisco during December 1980, when a packet repeater was put into operation on 2 meters by Hank Magnuski KA6M, and the Pacific Packet Radio Society (PPRS). [6] In keeping with the dominance of DARPA and ARPANET at the time, the nascent amateur packet radio network was dubbed the AMPRNet in DARPA style.[ citation needed ] Magnuski obtained IP address allocations in the 44.0.0.0/8 network for amateur radio use worldwide.

Many groups of amateur radio operators interested in packet radio soon formed throughout the country including the Pacific Packet Radio Society (PPRS) in California, the Tucson Amateur Packet Radio Corporation (TAPR) in Arizona and the Amateur Radio Research and Development Corporation (AMRAD) in Washington, D.C. [7]

By 1983, TAPR was offering the first TNC available in kit form. Packet radio started becoming more and more popular across North America and by 1984 the first packet-based bulletin board systems began to appear. Packet radio proved its value for emergency operations following the crash of an Aeromexico airliner in a neighborhood in Cerritos, California, in August, 1986. Volunteers linked several key sites to pass text traffic via packet radio which kept voice frequencies clear.

For an objective description of early developments in amateur packet radio, refer to the article "Packet Radio in the Amateur Service". [8] [5]

Concepts

Packet radio can be differentiated from other digital radio switching schemes by the following attributes:

This is very similar to how packets of data are transferred between nodes on the Internet.

One of the first challenges faced by amateurs implementing packet radio is that almost all amateur radio equipment (and most surplus commercial/military equipment) has historically been designed to transmit voice, not data. Like any other digital communications system that uses analog media, packet radio systems require a modem. Since the radio equipment to be used with the modem was intended for voice, early amateur packet systems used AFSK modems that followed telephone standards (notably the Bell 202 standard). While this approach worked, it was not optimal, because it used a 25 kHz FM channel to transmit at 1,200 baud. When using a direct FSK modulation like G3RUH's packet radio modem, a 9,600 baud transmission is easily made in the same channel. In addition, the baseband characteristics of the audio channel provided by voice radios are often quite different from those of telephone audio channels. This led to the need in some cases to enable or disable pre-emphasis or de-emphasis circuits in the radios and/or modems.

Another problem faced by early "packeteers" was the issue of asynchronous versus synchronous data transfer. At the time, most personal computers had asynchronous RS-232 serial ports for data communications between the computer and devices such as modems. The RS-232 standard specifies an asynchronous, start-stop mode of data transmission where data is sent in groups (characters) of 7 or 8 bits. Unfortunately, the simple AFSK modems typically used provide no timing signal to indicate the start of a packet frame. That led to the need for a mechanism to enable the receiver to know when to start assembling each packet frame. The method used is called asynchronous framing. The receiver looks for the "frame boundary octet," then begins decoding the packet data that follows it. Another frame boundary octet marks the end of the packet frame.

A number of data "conversations" are possible on a single radio channel over a finite period.

A basic packet radio station consists of a computer or dumb terminal, a modem, and a transceiver with an antenna. Traditionally, the computer and modem are combined in one unit, the terminal node controller (TNC), with a dumb terminal (or terminal emulator) used to input and display data. Increasingly, personal computers are taking over the functions of the TNC, with the modem either a standalone unit or implemented entirely in software. Alternatively, multiple manufacturers (including Kenwood and Alinco) now market handheld or mobile radios with built-in TNCs, allowing connection directly to the serial port of a computer or terminal with no other equipment required. The computer is responsible for managing network connections, formatting data as AX.25 packets, and controlling the radio channel. Frequently it provides other functionality as well, such as a simple bulletin board system to accept messages while the operator is away.

Layers

Following the OSI model, packet radio networks can be described in terms of the physical, data link, and network layer protocols on which they rely.

Physical

Packet radio networks rely on the AX.25 data link layer protocol, derived from the X.25 protocol suite and intended specifically for amateur radio use. Despite its name, AX.25 defines both the physical and data link layers of the OSI model. (It also defines a network layer protocol, though this is seldom used.) [10]

Network

Packet radio has most often been used for direct, keyboard-to-keyboard connections between stations, either between two live operators or between an operator and a bulletin board system. No network services above the data link layer are required for these applications.

To provide automated routing of data between stations (important for the delivery of electronic mail), several network layer protocols have been developed for use with AX.25. Most prominent among these network layer protocols are NET/ROM & TheNET, ROSE, FlexNet and TexNet.

In principle, any network layer protocol may be used, including the ubiquitous Internet Protocol.

Implementations

Many commercial operations, particularly those that make use of vehicle dispatch (e.g. taxis, tow trucks, police) were quick to note the value of packet radio systems to provide simple mobile data systems. This led to the rapid development of a number of commercial packet radio systems: [11]

See also

Related Research Articles

<span class="mw-page-title-main">General Packet Radio Service</span> Packet oriented mobile data service on 2G and 3G

General Packet Radio Service (GPRS), also called 2.5G, is a packet oriented mobile data standard on the 2G cellular communication network's global system for mobile communications (GSM). GPRS was established by European Telecommunications Standards Institute (ETSI) in response to the earlier CDPD and i-mode packet-switched cellular technologies. It is now maintained by the 3rd Generation Partnership Project (3GPP).

<span class="mw-page-title-main">Radioteletype</span> Radio linked electromechanical communications system

Radioteletype (RTTY) is a telecommunications system consisting originally of two or more electromechanical teleprinters in different locations connected by radio rather than a wired link. Radioteletype evolved from earlier landline teleprinter operations that began in the mid-1800s. The US Navy Department successfully tested printing telegraphy between an airplane and ground radio station in 1922. Later that year, the Radio Corporation of America successfully tested printing telegraphy via their Chatham, Massachusetts, radio station to the R.M.S. Majestic. Commercial RTTY systems were in active service between San Francisco and Honolulu as early as April 1932 and between San Francisco and New York City by 1934. The US military used radioteletype in the 1930s and expanded this usage during World War II. From the 1980s, teleprinters were replaced by personal computers (PCs) running software to emulate teleprinters.

<span class="mw-page-title-main">Frequency-shift keying</span> Data communications modulation protocol

Frequency-shift keying (FSK) is a frequency modulation scheme in which digital information is encoded on a carrier signal by periodically shifting the frequency of the carrier between several discrete frequencies. The technology is used for communication systems such as telemetry, weather balloon radiosondes, caller ID, garage door openers, and low frequency radio transmission in the VLF and ELF bands. The simplest FSK is binary FSK (BFSK), in which the carrier is shifted between two discrete frequencies to transmit binary information.

Data communication or digital communications, including data transmission and data reception, is the transfer and reception of data in the form of a digital bitstream or a digitized analog signal transmitted over a point-to-point or point-to-multipoint communication channel. Examples of such channels are copper wires, optical fibers, wireless communication using radio spectrum, storage media and computer buses. The data are represented as an electromagnetic signal, such as an electrical voltage, radiowave, microwave, or infrared signal.

<span class="mw-page-title-main">Cable modem</span> Broadband Internet access device

A cable modem is a type of network bridge that provides bi-directional data communication via radio frequency channels on a hybrid fibre-coaxial (HFC), radio frequency over glass (RFoG) and coaxial cable infrastructure. Cable modems are primarily used to deliver broadband Internet access in the form of cable Internet, taking advantage of the high bandwidth of a HFC and RFoG network. They are commonly deployed in the Americas, Asia, Australia, and Europe.

ALOHAnet, also known as the ALOHA System, or simply ALOHA, was a pioneering computer networking system developed at the University of Hawaii.

<span class="mw-page-title-main">Communication channel</span> Physical or logical connection used for transmission of information

A communication channel refers either to a physical transmission medium such as a wire, or to a logical connection over a multiplexed medium such as a radio channel in telecommunications and computer networking. A channel is used for information transfer of, for example, a digital bit stream, from one or several senders to one or several receivers. A channel has a certain capacity for transmitting information, often measured by its bandwidth in Hz or its data rate in bits per second.

AX.25 is a data link layer protocol originally derived from layer 2 of the X.25 protocol suite and designed for use by amateur radio operators. It is used extensively on amateur packet radio networks.

<span class="mw-page-title-main">Automatic Packet Reporting System</span> Amateur radio telemetry forwarding protocol

Automatic Packet Reporting System (APRS) is an amateur radio-based system for real time digital communications of information of immediate value in the local area. Data can include object Global Positioning System (GPS) coordinates, weather station telemetry, text messages, announcements, queries, and other telemetry. APRS data can be displayed on a map, which can show stations, objects, tracks of moving objects, weather stations, search and rescue data, and direction finding data.

<span class="mw-page-title-main">Terminal node controller</span>

A terminal node controller (TNC) is a device used by amateur radio operators to participate in AX.25 packet radio networks. It is similar in function to the Packet Assembler/Disassemblers used on X.25 networks, with the addition of a modem to convert baseband digital signals to audio tones.

The Bell 202 modem was an early (1976) modem standard developed by the Bell System. It specifies audio frequency-shift keying (AFSK) to encode and transfer data at a rate of 1200 bits per second (bit/s), half-duplex. It has separate sets of circuits for 1200 bit/s and 300 bit/s rates. These signalling protocols, also used in third-party modems, are referred to generically as Bell 202 modulation, and any device employing it as Bell-202-compatible.

In a digitally modulated signal or a line code, symbol rate, modulation rate or baud rate is the number of symbol changes, waveform changes, or signaling events across the transmission medium per unit of time. The symbol rate is measured in baud (Bd) or symbols per second. In the case of a line code, the symbol rate is the pulse rate in pulses per second. Each symbol can represent or convey one or several bits of data. The symbol rate is related to the gross bit rate, expressed in bits per second.

PACTOR is a radio modulation mode used by amateur radio operators, marine radio stations, military or government users such as the US Department of Homeland Security, and radio stations in isolated areas to send and receive digital information via radio.

Q15X25 is a communications protocol for sending data over a radio link. It was designed by amateur radio operator Pawel Jalocha, SP9VRC, to be an open communications standard. Like all amateur radio communications modes, this protocol uses open transmissions which can be received and decoded by anyone with similar equipment. Q15X25 is a form of packet radio. It can be used to interconnect local VHF AX.25 packet networks over transcontinental distances. Anyone can design or adapt the open-source software to develop their own Q15X25 system.

Winlink, or formally, Winlink Global Radio Email, also known as the Winlink 2000 Network, is a worldwide radio messaging system that uses amateur-band radio frequencies and government frequencies to provide radio interconnection services that include email with attachments, position reporting, weather bulletins, emergency and relief communications, and message relay. The system is built and administered by volunteers and is financially supported by the Amateur Radio Safety Foundation.

<span class="mw-page-title-main">Radio beacon</span> Radio transmitter to identify a location for navigation aid

In navigation, a radio beacon or radiobeacon is a kind of beacon, a device that marks a fixed location and allows direction-finding equipment to find relative bearing. But instead of employing visible light, radio beacons transmit electromagnetic radiation in the radio wave band. They are used for direction-finding systems on ships, aircraft and vehicles.

<span class="mw-page-title-main">ADSL</span> DSL service where downstream bandwidth exceeds upstream bandwidth

Asymmetric digital subscriber line (ADSL) is a type of digital subscriber line (DSL) technology, a data communications technology that enables faster data transmission over copper telephone lines than a conventional voiceband modem can provide. ADSL differs from the less common symmetric digital subscriber line (SDSL). In ADSL, bandwidth and bit rate are said to be asymmetric, meaning greater toward the customer premises (downstream) than the reverse (upstream). Providers usually market ADSL as an Internet access service primarily for downloading content from the Internet, but not for serving content accessed by others.

Digital mobile radio (DMR) is a digital radio standard for voice and data transmission in non-public radio networks. It was created by the European Telecommunications Standards Institute (ETSI), and is designed to be low-cost and easy to use. DMR, along with P25 phase II and NXDN are the main competitor technologies in achieving 6.25 kHz equivalent bandwidth using the proprietary AMBE+2 vocoder. DMR and P25 II both use two-slot TDMA in a 12.5 kHz channel, while NXDN uses discrete 6.25 kHz channels using frequency division and TETRA uses a four-slot TDMA in a 25 kHz channel.

AMSAT-OSCAR 16, also known as AO-16 and PACSAT, is the in-orbit name designation of an amateur radio satellite of the OSCAR series. It was built by AMSAT and was launched on 22 January 1990 from Kourou, French Guiana on an Ariane 4 launch vehicle. It is in sun synchronous low Earth orbit.

IL2P is a data link layer protocol originally derived from layer 2 of the X.25 protocol suite and designed for use by amateur radio operators. It is used exclusively on amateur packet radio networks.

References

  1. Okin,J.R. (2005). The Internet Revolution: The Not-for-Dummies Guide to the History, Technology, and Use of the Internet, p.81. Ironbound Press. ISBN   0-9763857-6-7.
  2. I wrote the code for the demo on May 31st 1978 at the M.A.R.C. meeting in Montreal
  3. Rouleau, Robert and Hodgson, Ian (1981). Packet Radio. Tab Books, Blue Ridge Summit, PA. ISBN   0-8306-9628-8.
  4. "The CQ Amateur Radio Hall of Fame" (PDF). CQ Amateur Radio. June 2007. Archived from the original (PDF) on 2008-12-03. Retrieved 2009-05-02.
  5. 1 2 Mendelsohn, Alex. "Amateur Packet – A Brief Chronology: Phase 1 (1970–1986)". Archived from the original on 2001-01-29. Retrieved 2009-08-09. See FCC Gives The Nod and Making Modifications
  6. Kenney, Larry "Introduction to Packet Radio – Part 1", "A Short History – How it all began". Retrieved 2009-08-09.
  7. American Radio Relay League (2008). "ARRL's VHF Digital Handbook", pp. 1–2, American Radio Relay League. ISBN   0-87259-122-0.
  8. Karn, P. Price H. Diersing, R. (May 1985). "Packet Radio in the Amateur Service", pp. 431–439, "IEEE Journal on Selected Areas in Communications". ISSN 0733-8716.
  9. Security & Data Integrity On A Modern Amateur Radio Network – By: Paul J. Toth – NA4AR "HSMM and Information Security," by K8OCL CQ-VHF Fall 2004 – preview via CQ-VHF website "Data Encryption is Legal," N2IRZ, CQ Magazine Aug 2006 – preview from the Summer 2006 TAPR PSR http://www.arrl.org/files/file/About%20ARRL/Committee%20Reports/2004/July/HSMM.pdf
  10. AX.25 Link Access Protocol for Amateur Packet Radio: the official specification, from Tucson Amateur Packet Radio
  11. DeRose, James F. (1999). "The Wireless Data Handbook", pp.3–7. Wiley-Interscience; 4th edition. ISBN   0-471-31651-2.

Further reading