Olivia MFSK

Last updated
Spectrogram (waterfall display) of an Olivia 16/500 signal centered on 7073.25 kHz Olivia 16-500 waterfall.jpg
Spectrogram (waterfall display) of an Olivia 16/500 signal centered on 7073.25 kHz

Olivia MFSK is an amateur radioteletype protocol, using multiple frequency-shift keying (MFSK) and designed to work in difficult (low signal-to-noise ratio plus multipath propagation) conditions on shortwave bands. The signal can be accurately received even if the surrounding noise is 10 dB stronger. It is commonly used by amateur radio operators to reliably transmit ASCII characters over noisy channels using the high frequency (3–30  MHz) spectrum. The effective data rate of the Olivia MFSK protocol is 150 characters/minute.

Contents

Olivia modes are commonly referred to as Olivia X / Y (or, alternatively, Olivia Y / X), where X refers to the number of different audio tones transmitted and Y refers to the bandwidth in hertz over which these signals are spread. Examples of common Olivia modes are 16/500, 32/1000 and 8/250.

History

The protocol was developed at the end of 2003 by Pawel Jalocha. The first on-the-air tests were performed by two radio amateurs, Fred OH/DK4ZC and Les VK2DSG, on the Europe-Australia path in the 20-meter amateur band. The tests proved that the protocol works well and can allow regular intercontinental radio contacts with as little as one watt RF power. Since 2005 Olivia has become a standard for digital data transfer under white noise, fading and multipath, flutter (polar path) and auroral conditions.

Voluntary channelization

Since Olivia signals can be decoded even when received signals are extremely weak, (signal-to-noise ratio of −14  dB), [1] signals strong enough to be decoded are sometimes below the noise floor and therefore impossible to search for manually. As a result, amateur radio operators have voluntarily decided upon channelization for this mode. This channelization allows even imperceptibly weak signals to be properly tuned for reception and decoding. By common convention amateur stations initiate contacts utilizing either the 16/500 or 32/1000 modes and then switch to other modes to continue the conversation. The following table lists the common center frequencies used in the amateur radio bands, and is based on community collaboration after the introduction of new amateur radio digital modes and the resulting overlapping with the Olivia calling frequencies on some amateur radio bands.

Olivia Suggested Calling Frequencies [1] (move after establishing QSO)
Band Center Frequency (MHz)Dial FrequencyNumber of Tones/Bandwidth (initial)Notes
160 meters 1.8270 MHz1.8255 MHz8/250(ITU Region 2; Secondary)
160 meters 1.8390 MHz1.8375 MHz8/250(ITU Regions 1, 3; Primary, International)
80 meters 3.5830 MHz3.5815 MHz8/250
40 meters 7.0400 MHz7.0385 MHz8/250(International/DX)
40 meters 7.0730 MHz7.0715 MHz8/250(Primary DX)
30 meters 10.1430 MHz10.1415 MHz8/250
30 meters 10.1440 MHz10.1425 MHz16/1000(Potential - be mindful of other stations and modes)
20 meters 14.0730 MHz14.0715 MHz8/250
20 meters 14.1075 MHz14.1060 MHz16/1000, 32/1000
17 meters 18.0990 MHz18.0975 MHz8/250
15 meters 21.0730 MHz21.0715 MHz8/250
12 meters 24.9230 MHz24.9215 MHz8/250
10 meters 28.1230 MHz28.1215 MHz8/250

Tones and bandwidth combinations

Olivia 8/250-Signal detected on a SDR in New Zealand Olivia-8-250-Signal from HB9BFM detected in ZL.png
Olivia 8/250-Signal detected on a SDR in New Zealand

Conversations using Olivia are by convention initiated using either Olivia 16/500 (16 tones over a 500 Hz bandwidth) or Olivia 32/1000 (32 tones over a 1000 Hz bandwidth). [1] Once communications have been established, the communicating parties mutually decide if another mode would better suit the current propagation conditions. The possible number of tones that can be chosen are 2, 4, 8, 16, 32, 64, 128, and 256 with higher numbers of tones giving more data redundancy but slower throughput and lower numbers of tones giving faster throughput at the cost of less redundancy. Available bandwidths for Olivia are 125 Hz, 256 Hz, 512 Hz, 500 Hz, 1000 Hz, and 2000 Hz with wider bandwidths giving faster throughput and narrower bandwidths giving slower throughput. The most commonly used combinations are 4/125, 8/250, 8/500, 16/500, 16/1000, and 32/1000.

Technical details

Being a digital protocol, Olivia transmits a stream of ASCII (7-bit) characters. The characters are sent in blocks of 5. Each block takes 2 seconds to transmit, thus the effective data rate is 2.5 character/second or 150 characters/minute. The most common transmission bandwidth is 1000  Hz and the baud rate is 31.25 MFSK tones/second. To accommodate for different conditions and for the purpose of experimentation the bandwidth and the baud rate can be changed.

The Olivia transmission system is constructed of two layers: the lower, modulation and forward error correcting (FEC) code layer is a classical multiple frequency-shift keying (MFSK) while the higher layer is a forward error correcting code based on Walsh functions.

Both layers are of similar nature: they constitute a "1-out-of-N" FEC code. For the first layer the orthogonal functions are (co)sine functions, with 32 different frequencies (tones). At a given time only one of those 32 tones is being sent. The demodulator measures the amplitudes of all the 32 possible tones (using a Fourier transform) and (knowing that only one of those 32 could have been sent) picks up the tone with the highest amplitude. [2]

For the second FEC layer: every ASCII character is encoded as one of 64 possible Walsh functions (or vectors of a Hadamard matrix). The receiver again measures the amplitudes for all 64 vectors (here comes the Hadamard Transform) and chooses the greatest. [3]

For optimal performance the actual demodulators work with soft decisions and the final (hard) decision to decode a character is taken only at the second layer. Thus the first layer demodulator actually produces soft decisions for each of the 5 bits associated to an MFSK tone instead of simply picking up the highest tone to produce hard decisions for those 5 bits.

In order to avoid simple transmitted patterns (like a constant tone) and to minimize the chance for a false lock at the synchronizer the characters encoded into the Walsh function pass through a scrambler and interleaver. This stage simply shifts and XORs bits with predefined scrambling vectors and so it does not improve the performance where the white (uncorrelated) noise is concerned, but the resulting pattern gains certain distinct characteristics which are of great help to the synchronizer.

The receiver synchronizes automatically by searching through possible time and frequency offsets for a matching pattern. The frequency search range is normally ±100 Hz but can be as high as ±500 Hz if the user wishes so.

The MFSK layer

The default mode sends 32 tones within the 1000 Hz audio bandwidth and the tones are spaced by 1000 Hz/32 = 31.25 Hz. The tones are shaped to minimize the amount of energy sent outside the nominal bandwidth.

The exact shape formula is:

where x ranges from −π to π.

A plot of the window ("shape formula") Olivia MFSK window.gif
A plot of the window ("shape formula")

The coefficients represent the symbol shape in the frequency domain and were calculated by a minimization procedure which sought to make the smallest crosstalk and the smallest frequency spillover.

The tones are sent at 31.25 baud or every 32 milliseconds. The phase is not preserved from one tone to the next: instead a random shift of ±90 degrees is introduced in order not to transmit a pure tone when the same symbol is repeatedly sent. Because the symbols are smoothly shaped there is no need to keep the phase constant, which normally is the case when no (e.g., square) shaping is used.

The modulator uses the Gray code to encode 5-bit symbols into the tone numbers.

The waveform generator is based on the 8000 Hz sampling rate. The tones are spaced by 256 samples in time and the window that shapes them is 512 samples long. The demodulator is based on the FFT with the size of 512 points. The tone spacing in frequency is 8000 Hz/256 = 31.25 Hz and the demodulator FFT has the resolution of 8000 Hz/512 = 15.625 Hz thus half of the tone separation.

To adapt the system to different propagation conditions, the number of tones and the bandwidth can be changed and the time and frequency parameters are proportionally scaled. The number of tones can be 2, 4, 8, 16, 32, 64, 128 or 256. The bandwidth can be 125, 250, 500, 1000 or 2000 Hz.

The Walsh functions FEC layer

The modulation layer of the Olivia transmission system in the default mode sends one of 32 tones at a time. Each tone thus constitutes a symbol that carries 5 bits of information. For the FEC code, 64 symbols are taken to form a block. Within each block one bit out of every symbol is taken and it forms a 64-bit vector coded as a Walsh function. Every 64-bit vector represents a 7-bit ASCII character, thus each block represents 5 ASCII characters.

This way, if one symbol (tone) becomes corrupted by the noise, only one bit of every 64-bit vector becomes corrupt, thus the transmission errors are spread uniformly across the characters within a block.

The two layers (MFSK+Walsh function) of the FEC code can be treated as a two dimensional code: the first dimension is formed along the frequency axis by the MFSK itself while the second dimension is formed along the time axis by the Walsh functions. The two dimensional arrangement was made with the idea in mind to solve such arranged FEC code with an iterative algorithm, however, no such algorithm has yet been established.

The scrambling and simple bit interleaving is applied to make the generated symbol patterns appear more random and with minimal self-correlation. This avoids false locks at the receiver.

Bit interleaving: The Walsh function for the first character in a block is constructed from the 1st bit of the 1st symbol, the 2nd bit of the 2nd symbol, and so on. The 2nd Walsh function is constructed from the 2nd bit of the 1st symbol, the 3rd bit of the 2nd symbol, and so on.

Scrambling: The Walsh functions are scrambled with a pseudo-random sequence 0xE257E6D0291574EC. The Walsh function for the 1st character in a block is scrambled with the scrambling sequence, the 2nd Walsh function is scrambled with the sequence rotated right by 13 bits, the 3rd with the sequence rotated by 26 bits, and so on.

Samples

Contestia

Contestia is a digital mode that is directly derived from Olivia, which is not as robust. It is more of a compromise between performance and speed. It sounds and looks almost identical to Olivia, and can be configured in as many ways, but has just over twice the speed. The mode was developed by Nick Fedoseev, UT2UZ, in 2005.

The Contestia mode has 40 formats just like Olivia - some of which are considered standard and they all have different characteristics. The formats have a variation in bandwidth (125, 250, 500, 1000, and 2000 Hz) and number of tones used (2, 4, 8, 16, 32, 64, 128, or 256).

The standard Contestia formats (bandwidth/tones) are 125/4, 250/8, 500/16, 1000/32, and 2000/64. The most commonly used formats are 250/8, 500/16, and 1000/32. [4] The increased speed of Contestia is achieved by using a smaller symbol block size of (32) rather than Olivia (64) and by using a 6-bit decimal character set rather than 7-bit ASCII set which Olivia uses.

This reduced character set does not print out in both upper and lower case (such as RTTY). Some traffic nets may not like to use this mode as it does not support upper and lower case characters and extended characters found in many documents and messages. This does not pose a problem for normal digital chats within ham communications. [4]

Related Research Articles

<span class="mw-page-title-main">Frequency modulation</span> Encoding of information in a carrier wave by varying the instantaneous frequency of the wave

Frequency modulation (FM) is the encoding of information in a carrier wave by varying the instantaneous frequency of the wave. The technology is used in telecommunications, radio broadcasting, signal processing, and computing.

Quadrature amplitude modulation (QAM) is the name of a family of digital modulation methods and a related family of analog modulation methods widely used in modern telecommunications to transmit information. It conveys two analog message signals, or two digital bit streams, by changing (modulating) the amplitudes of two carrier waves, using the amplitude-shift keying (ASK) digital modulation scheme or amplitude modulation (AM) analog modulation scheme. The two carrier waves are of the same frequency and are out of phase with each other by 90°, a condition known as orthogonality or quadrature. The transmitted signal is created by adding the two carrier waves together. At the receiver, the two waves can be coherently separated (demodulated) because of their orthogonality. Another key property is that the modulations are low-frequency/low-bandwidth waveforms compared to the carrier frequency, which is known as the narrowband assumption.

<span class="mw-page-title-main">Radioteletype</span> Radio linked electromechanical communications system

Radioteletype (RTTY) is a telecommunications system consisting originally of two or more electromechanical teleprinters in different locations connected by radio rather than a wired link. Radioteletype evolved from earlier landline teleprinter operations that began in the mid-1800s. The US Navy Department successfully tested printing telegraphy between an airplane and ground radio station in 1922. Later that year, the Radio Corporation of America successfully tested printing telegraphy via their Chatham, Massachusetts, radio station to the R.M.S. Majestic. Commercial RTTY systems were in active service between San Francisco and Honolulu as early as April 1932 and between San Francisco and New York City by 1934. The US military used radioteletype in the 1930s and expanded this usage during World War II. From the 1980s, teleprinters were replaced by personal computers (PCs) running software to emulate teleprinters.

<span class="mw-page-title-main">Single-sideband modulation</span> Type of modulation

In radio communications, single-sideband modulation (SSB) or single-sideband suppressed-carrier modulation (SSB-SC) is a type of modulation used to transmit information, such as an audio signal, by radio waves. A refinement of amplitude modulation, it uses transmitter power and bandwidth more efficiently. Amplitude modulation produces an output signal the bandwidth of which is twice the maximum frequency of the original baseband signal. Single-sideband modulation avoids this bandwidth increase, and the power wasted on a carrier, at the cost of increased device complexity and more difficult tuning at the receiver.

<span class="mw-page-title-main">Baseband</span> Range of frequencies occupied by an unmodulated signal

In telecommunications and signal processing, baseband is the range of frequencies occupied by a signal that has not been modulated to higher frequencies. Baseband signals typically originate from transducers, converting some other variable into an electrical signal. For example, the electronic output of a microphone is a baseband signal that is analogous to the applied voice audio. In conventional analog radio broadcasting, the baseband audio signal is used to modulate an RF carrier signal of a much higher frequency.

Phase-shift keying (PSK) is a digital modulation process which conveys data by changing (modulating) the phase of a constant frequency carrier wave. The modulation is accomplished by varying the sine and cosine inputs at a precise time. It is widely used for wireless LANs, RFID and Bluetooth communication.

<span class="mw-page-title-main">Sideband</span> Radio communications concept

In radio communications, a sideband is a band of frequencies higher than or lower than the carrier frequency, that are the result of the modulation process. The sidebands carry the information transmitted by the radio signal. The sidebands comprise all the spectral components of the modulated signal except the carrier. The signal components above the carrier frequency constitute the upper sideband (USB), and those below the carrier frequency constitute the lower sideband (LSB). All forms of modulation produce sidebands.

<span class="mw-page-title-main">Slow-scan television</span> Image transmission over radio

Slow-scan television (SSTV) is a picture transmission method, used mainly by amateur radio operators, to transmit and receive static pictures via radio in monochrome or color.

<span class="mw-page-title-main">Very low frequency</span> The range 3–30 kHz of the electromagnetic spectrum

Very low frequency or VLF is the ITU designation for radio frequencies (RF) in the range of 3–30 kHz, corresponding to wavelengths from 100 to 10 km, respectively. The band is also known as the myriameter band or myriameter wave as the wavelengths range from one to ten myriameters. Due to its limited bandwidth, audio (voice) transmission is highly impractical in this band, and therefore only low data rate coded signals are used. The VLF band is used for a few radio navigation services, government time radio stations and for secure military communication. Since VLF waves can penetrate at least 40 meters (131 ft) into saltwater, they are used for military communication with submarines.

A satellite modem or satmodem is a modem used to establish data transfers using a communications satellite as a relay. A satellite modem's main function is to transform an input bitstream to a radio signal and vice versa.

<span class="mw-page-title-main">PSK31</span>

PSK31 or "Phase Shift Keying, 31 Baud", also BPSK31 and QPSK31, is a popular computer-sound card-generated radioteletype mode, used primarily by amateur radio operators to conduct real-time keyboard-to-keyboard chat, most often using frequencies in the high frequency amateur radio bands (near-shortwave). PSK31 is distinguished from other digital modes in that it is specifically tuned to have a data rate close to typing speed, and has an extremely narrow bandwidth, allowing many conversations in the same bandwidth as a single voice channel. This narrow bandwidth makes better use of the RF energy in a very narrow space thus allowing relatively low-power equipment to communicate globally using the same skywave propagation used by shortwave radio stations.

Spectral efficiency, spectrum efficiency or bandwidth efficiency refers to the information rate that can be transmitted over a given bandwidth in a specific communication system. It is a measure of how efficiently a limited frequency spectrum is utilized by the physical layer protocol, and sometimes by the medium access control.

The 80-meter or 3.5 MHz band is a band of radio frequencies allocated for amateur radio use, from 3.5 to 4.0 MHz in IARU Region 2, and generally 3.5 to 3.8 or 3.9 MHz in Regions 1 and 3 respectively. The upper portion of the band, which is usually used for phone (voice), is sometimes referred to as 75 meters. In Europe, 75m is a shortwave broadcast band, with a number of national radio services operating between 3.9 and 4.0 MHz.

SITOR is a system for transmitting text messages. It was developed in the 1960s by Koninklijke TNT Post as an improvement over radioteletype (RTTY). Although it uses the same frequency-shift keying (FSK) modulation used by regular RTTY, SITOR uses error detection, redundancy, and/or retransmission to improve reliability.

Multiple frequency-shift keying (MFSK) is a variation of frequency-shift keying (FSK) that uses more than two frequencies. MFSK is a form of M-ary orthogonal modulation, where each symbol consists of one element from an alphabet of orthogonal waveforms. M, the size of the alphabet, is usually a power of two so that each symbol represents log2M bits.

In a digitally modulated signal or a line code, symbol rate, modulation rate or baud rate is the number of symbol changes, waveform changes, or signaling events across the transmission medium per unit of time. The symbol rate is measured in baud (Bd) or symbols per second. In the case of a line code, the symbol rate is the pulse rate in pulses per second. Each symbol can represent or convey one or several bits of data. The symbol rate is related to the gross bit rate, expressed in bits per second.

Amateur radio frequency allocation is done by national telecommunication authorities. Globally, the International Telecommunication Union (ITU) oversees how much radio spectrum is set aside for amateur radio transmissions. Individual amateur stations are free to use any frequency within authorized frequency ranges; authorized bands may vary by the class of the station license.

WSJT-X is a computer program used for weak-signal radio communication between amateur radio operators. The program was initially written by Joe Taylor, K1JT, but is now open source and is developed by a small team. The digital signal processing techniques in WSJT-X make it substantially easier for amateur radio operators to employ esoteric propagation modes, such as high-speed meteor scatter and moonbounce. Additionally WSJT is able to send signal reports to spotting networks such as PSK Reporter.

Fast Simple QSO(FSQ) is an amateur radio digital differential frequency modulation mode developed by Con Wassilieff ZL2AFP with Murray Greenman ZL1BPU in 2015.

References

  1. "The equations and graphs behind the MFSK layer". Archived from the original on December 22, 2007.
  2. "The algorithms and more details". Archived from the original on September 27, 2007.
  3. 1 2 "Contestia Digital Mode Information". Contestia Digital Mode Information. Retrieved 1 May 2015.