WSPR (amateur radio software)

Last updated
WSPR
Developer(s) Joe Taylor, K1JT
Initial release2008
Written inPython (GUI), Fortran, C [1]
Operating system Cross-platform
Available inEnglish, Italian, Spanish, French, German, Japanese, Polish, Portuguese, Russian
Type Amateur radio and DSP
License GPL
Website physics.princeton.edu/pulsar/K1JT/wspr.html [ dead link ]

WSPR (pronounced "whisper") is an acronym for Weak Signal Propagation Reporter. It is a protocol, implemented in a computer program, used for weak-signal radio communication between amateur radio operators. The protocol was designed, and a program written initially, by Joe Taylor, K1JT. The software code is now open source and is developed by a small team. The program is designed for sending and receiving low-power transmissions to test propagation paths on the MF and HF bands.

Contents

WSPR implements a protocol designed for probing potential propagation paths with low-power transmissions. Transmissions carry a station's callsign, Maidenhead grid locator, and transmitter power in dBm. The program can decode signals with a signal-to-noise ratio as low as 28 dB in a 2500 Hz bandwidth. [2] Stations with internet access can automatically upload their reception reports to a central database called WSPRnet, which includes a mapping facility.

The WSPR Protocol

The type of radio emission is “F1D”, frequency-shift keying. A message contains a station's callsign, Maidenhead grid locator, and transmitter power in dBm. [3] The WSPR protocol compresses the information in the message into 50  bits (binary digits). These are encoded using a convolutional code with constraint length K = 32 and a rate of r = 12. [3] [4] The long constraint length makes undetected decoding errors less probable, at the cost that the highly efficient Viterbi algorithm must be replaced by a simple sequential algorithm for the decoding process. [3]

Protocol specification

The standard message is <callsign> + <4 character locator> + <dBm transmit power>; for example “K1ABC FN20 37” is a signal from station K1ABC in Maidenhead grid cell “FN20”, sending 37 dBm, or about 5.0 W (legal limit for 630 m). Messages with a compound callsign and/or 6 digit locator use a two-transmission sequence. The first transmission carries compound callsign and power level, or standard callsign, 4 digit locator, and power level; the second transmission carries a hashed callsign, 6 digit locator, and power level. Add-on prefixes can be up to three alphanumeric characters; add-on suffixes can be a single letter or one or two digits.

28 bits for callsign,
15 bits for locator,
7 bits for power level,
total: 50 bits.
non-recursive convolutional code with constraint length K = 32, rate r = 12.
nsym = (50 + K  1) × 2 = 162. [3]
An Agilent Modulation Domain Analyzer 53310A showing the narrow band 4-FSK signal produced by a Raspberry Pi. 4-FSK used for WSPR.jpg
An Agilent Modulation Domain Analyzer 53310A showing the narrow band 4-FSK signal produced by a Raspberry Pi.

Applications

Raspberry Pi as WSPR transmitter WsprryPi.JPG
Raspberry Pi as WSPR transmitter

The protocol was designed to test propagation paths on the LF, MF and HF bands. Also used experimentally at VHF and higher frequencies.

Other applications include antenna testing, frequency stability and frequency accuracy checking.

Usually a WSPR station contains a computer and a transceiver, but it is also possible to build very simple beacon transmitters with little effort.

For example a simple WSPR beacon can be built using the Si 570, [5] or Si 5351. [6] The Raspberry Pi can also be used as WSPR beacon.

Density distribution of WSPR spots, January 2014 vs July 2014, using only most distant reception per spot. WSPR 2014.svg
Density distribution of WSPR spots, January 2014 vs July 2014, using only most distant reception per spot.

An accurate clock is essential both for transmission and decoding of received signals.

MH370 hypothesis

In May 2021, aerospace engineer Richard Godfrey suggested examining historical WSPR data as a way to define the flight path of Malaysia Airlines Flight 370 on 8 March 2014. [7] In November 2021, Godfrey stated his belief that his analysis indicates the aircraft flew in circles for around 22 minutes in an area 150 nautical miles (280 km; 170 mi) from the coast of Sumatra before vanishing, later proposing a search area centered around 33°10′37″S95°18′00″E / 33.177°S 95.3°E / -33.177; 95.3 . [8] [9] [10] [11]

As of March 2024, the validity of Godfrey's claim is yet to be established. [12] On 6 March 2024 the BBC documentary Why Planes Vanish: The Hunt for MH370 examined Godfrey's claim and reported that scientists at the University of Liverpool were undertaking an analytical study of the possibility of using WSPR technology to locate the missing aircraft. The University stated they would release their results within 6 months. [13] [14]

History

WSPR was originally released in 2008.

Related Research Articles

<span class="mw-page-title-main">Sideband</span> Radio communications concept

In radio communications, a sideband is a band of frequencies higher than or lower than the carrier frequency, that are the result of the modulation process. The sidebands carry the information transmitted by the radio signal. The sidebands comprise all the spectral components of the modulated signal except the carrier. The signal components above the carrier frequency constitute the upper sideband (USB), and those below the carrier frequency constitute the lower sideband (LSB). All forms of modulation produce sidebands.

<span class="mw-page-title-main">Emergency position-indicating radiobeacon</span> Distress radio beacon, a tracking transmitter that is triggered during an accident

An emergency position-indicating radiobeacon (EPIRB) is a type of emergency locator beacon for commercial and recreational boats, a portable, battery-powered radio transmitter used in emergencies to locate boaters in distress and in need of immediate rescue. In the event of an emergency, such as a ship sinking or medical emergency onboard, the transmitter is activated and begins transmitting a continuous 406 MHz distress radio signal, which is used by search-and-rescue teams to quickly locate the emergency and render aid. The signal is detected by satellites operated by an international consortium of rescue services, COSPAS-SARSAT, which can detect emergency beacons anywhere on Earth transmitting on the distress frequency of 406 MHz. The satellites calculate the position or utilize the GPS coordinates of the beacon and quickly passes the information to the appropriate local first responder organization, which performs the search and rescue. As Search and Rescue approach the search areas, they use Direction Finding (DF) equipment to locate the beacon using the 121.5 MHz homing signal, or in newer EPIRBs, the AIS location signal. The basic purpose of this system is to help rescuers find survivors within the so-called "golden day" during which the majority of survivors can usually be saved. The feature distinguishing a modern EPIRB, often called GPIRB, from other types of emergency beacon is that it contains a GPS receiver and broadcasts its position, usually accurate within 100 m (330 ft), to facilitate location. Previous emergency beacons without a GPS can only be localized to within 2 km (1.2 mi) by the COSPAS satellites and relied heavily upon the 121.5 MHz homing signal to pin-point the beacons location as they arrived on scene.

<span class="mw-page-title-main">Communication channel</span> Physical or logical connection used for transmission of information

A communication channel refers either to a physical transmission medium such as a wire, or to a logical connection over a multiplexed medium such as a radio channel in telecommunications and computer networking. A channel is used for information transfer of, for example, a digital bit stream, from one or several senders to one or several receivers. A channel has a certain capacity for transmitting information, often measured by its bandwidth in Hz or its data rate in bits per second.

<span class="mw-page-title-main">Very low frequency</span> The range 3–30 kHz of the electromagnetic spectrum

Very low frequency or VLF is the ITU designation for radio frequencies (RF) in the range of 3–30 kHz, corresponding to wavelengths from 100 to 10 km, respectively. The band is also known as the myriameter band or myriameter wave as the wavelengths range from one to ten myriameters. Due to its limited bandwidth, audio (voice) transmission is highly impractical in this band, and therefore only low data rate coded signals are used. The VLF band is used for a few radio navigation services, government time radio stations and for secure military communication. Since VLF waves can penetrate at least 40 meters (131 ft) into saltwater, they are used for military communication with submarines.

<span class="mw-page-title-main">Longwave</span> Radio transmission using wavelengths above 1000 m

In radio, longwave, long wave or long-wave, and commonly abbreviated LW, refers to parts of the radio spectrum with wavelengths longer than what was originally called the medium-wave broadcasting band. The term is historic, dating from the early 20th century, when the radio spectrum was considered to consist of longwave (LW), medium-wave (MW), and short-wave (SW) radio bands. Most modern radio systems and devices use wavelengths which would then have been considered 'ultra-short'.

Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another in vacuum, or into various parts of the atmosphere. As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering. Understanding the effects of varying conditions on radio propagation has many practical applications, from choosing frequencies for amateur radio communications, international shortwave broadcasters, to designing reliable mobile telephone systems, to radio navigation, to operation of radar systems.

<span class="mw-page-title-main">Digital Radio Mondiale</span> Digital radio broadcasting standard

Digital Radio Mondiale is a set of digital audio broadcasting technologies designed to work over the bands currently used for analogue radio broadcasting including AM broadcasting—particularly shortwave—and FM broadcasting. DRM is more spectrally efficient than AM and FM, allowing more stations, at higher quality, into a given amount of bandwidth, using xHE-AAC audio coding format. Various other MPEG-4 codecs and Opus are also compatible, but the standard now specifies xHE-AAC.

<span class="mw-page-title-main">PSK31</span> Type of radioteletype mode

PSK31 or "Phase Shift Keying, 31 Baud", also BPSK31 and QPSK31, is a popular computer-sound card-generated radioteletype mode, used primarily by amateur radio operators to conduct real-time keyboard-to-keyboard chat, most often using frequencies in the high frequency amateur radio bands (near-shortwave). PSK31 is distinguished from other digital modes in that it is specifically tuned to have a data rate close to typing speed, and has an extremely narrow bandwidth, allowing many conversations in the same bandwidth as a single voice channel. This narrow bandwidth makes better use of the RF energy in a very narrow space thus allowing relatively low-power equipment to communicate globally using the same skywave propagation used by shortwave radio stations.

<span class="mw-page-title-main">DCF77</span> German time signal radio station

DCF77 is a German longwave time signal and standard-frequency radio station. It started service as a standard-frequency station on 1 January 1959. In June 1973 date and time information was added. Its primary and backup transmitter are located at 50°0′56″N9°00′39″E in Mainflingen, about 25 km south-east of Frankfurt am Main, Germany. The transmitter generates a nominal power of 50 kW, of which about 30 to 35 kW can be radiated via a T-antenna.

Spectral efficiency, spectrum efficiency or bandwidth efficiency refers to the information rate that can be transmitted over a given bandwidth in a specific communication system. It is a measure of how efficiently a limited frequency spectrum is utilized by the physical layer protocol, and sometimes by the medium access control.

Olivia MFSK is an amateur radioteletype protocol, using multiple frequency-shift keying (MFSK) and designed to work in difficult conditions on shortwave bands. The signal can be accurately received even if the surrounding noise is 10 dB stronger. It is commonly used by amateur radio operators to reliably transmit ASCII characters over noisy channels using the high frequency (3–30 MHz) spectrum. The effective data rate of the Olivia MFSK protocol is 150 characters/minute.

Multiple frequency-shift keying (MFSK) is a variation of frequency-shift keying (FSK) that uses more than two frequencies. MFSK is a form of M-ary orthogonal modulation, where each symbol consists of one element from an alphabet of orthogonal waveforms. M, the size of the alphabet, is usually a power of two so that each symbol represents log2M bits.

<span class="mw-page-title-main">UVB-76</span> Soviet and Russian shortwave radio station

UVB-76, also known by the nickname "The Buzzer", is a shortwave radio station that broadcasts on the frequency of 4,625 kHz. It broadcasts a short, monotonous, repeating at a rate of approximately 25 tones per minute, 24 hours per day. Sometimes, the buzzer signal is interrupted and a voice transmission in Russian takes place.

WSJT-X is a computer program used for weak-signal radio communication between amateur radio operators. The program was initially written by Joe Taylor, K1JT, but is now open source and is developed by a small team. The digital signal processing techniques in WSJT-X make it substantially easier for amateur radio operators to employ esoteric propagation modes, such as high-speed meteor scatter and moonbounce. Additionally WSJT is able to send signal reports to spotting networks such as PSK Reporter.

<span class="mw-page-title-main">Radio beacon</span> Radio transmitter to identify a location for navigation aid

In navigation, a radio beacon or radiobeacon is a kind of beacon, a device that marks a fixed location and allows direction-finding equipment to find relative bearing. But instead of employing visible light, radio beacons transmit electromagnetic radiation in the radio wave band. They are used for direction-finding systems on ships, aircraft and vehicles.

<span class="mw-page-title-main">Radio</span> Use of radio waves to carry information

Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves. They are received by another antenna connected to a radio receiver. In addition to communication, radio is used for radar, radio navigation, remote control, remote sensing, and other applications.

An amateur radio propagation beacon is a radio beacon, whose purpose is the investigation of the propagation of radio signals. Most radio propagation beacons use amateur radio frequencies. They can be found on LF, MF, HF, VHF, UHF, and microwave frequencies. Microwave beacons are also used as signal sources to test and calibrate antennas and receivers.

The Pip is a shortwave radio station that broadcasts on the frequency 5448 kHz by day, and 3756 kHz during the night. It broadcasts short, repeated beeps at a rate of around 50 per minute, for 24 hours per day. The beep signal is occasionally interrupted by voice messages in Russian. The Pip has been active since 1986, when its distinctive beeping sound was first recorded by listeners, and is a sister station to UVB-76.

<span class="mw-page-title-main">Malaysia Airlines Flight 370 satellite communications</span> Overview of MH370s satellite-transmitted messages

The analysis of communications between Malaysia Airlines Flight 370 and Inmarsat's satellite telecommunication network provide the primary source of information about Flight 370's location and possible in-flight events after it disappeared from military radar coverage at 02:22 Malaysia Standard Time (MYT) on 8 March 2014, one hour after communication with air traffic control ended and the aircraft departed from its planned flight path while over the South China Sea.

<span class="mw-page-title-main">FT8</span> Frequency shift keying digital mode

FT8 is a frequency shift keying digital mode of radio communication used by amateur radio operators worldwide. Following release on June 29, 2017, by its creators Joe Taylor, K1JT, and Steve Franke, K9AN, along with the software package WSJT, FT8 was adopted rapidly, becoming the most popular digital mode recorded by automatic spotting networks such as PSK Reporter within 2 years.

References

  1. "WSJT Program Development Page". physics.princeton.edu.
  2. "WSJT Home Page". physics.princeton.edu.
  3. 1 2 3 4 Joe Taylor, K1JT: WSPRing Around the World. QST November (2010), p. 30-32.
  4. "G4JNT: The WSPR Coding Process: Non-normative specification of WSPR protocol" (PDF).
  5. WSPR Beacon with Si 570 and Atmel AVR http://wsprnet.org/drupal/sites/wsprnet.org/files/si570wspr.pdf
  6. QRSS/WSPR Transmitter Kit https://qrp-labs.com/
  7. Malaysia Airlines flight MH370 left 'false trails' before disappearing, new research suggests, Anne Barker, ABC News Online, 2021-05-05
  8. Browning, Simon (3 December 2021). "MH370: Could missing Malaysian Airlines plane finally be found?". BBC . Retrieved 27 January 2022.
  9. Thomas, Geoffrey (2021-09-07). "Breakthrough technology giving real hope for a new search for MH370". Airline Ratings. Retrieved 2023-05-16.
  10. Thomas, Geoffrey (2022-06-25). "MH370 TRACKING EXPERT DEMONSTRATES HIS TECHNOLOGY ONCE AGAIN". Airline Ratings. Retrieved 2023-05-16.
  11. Thomas, Geoffrey (2022-10-28). "MH370: New Research Paper Confirms WSPRnet Tracking Technology". Airline Ratings. Retrieved 2023-05-16.
  12. Thomas, Geoffrey (2022-11-02). "MH370 New Location Critics Sunk". Airline Ratings. Retrieved 2023-05-16.
  13. "Why Planes Vanish: The Hunt for MH370" via www.bbc.co.uk.
  14. Wilson, Natalie (7 March 2024). "Could disrupted radio signals locate MH370? Theory is examined in new documentary". The Independent. Retrieved 8 March 2024.

Further reading

GDTAAA WSPRnet MH370 Analysis Flight Path Report (Self-published, Dropbox)