Multiple frequency-shift keying

Last updated

Multiple frequency-shift keying (MFSK) is a variation of frequency-shift keying (FSK) that uses more than two frequencies. MFSK is a form of M-ary orthogonal modulation, where each symbol consists of one element from an alphabet of orthogonal waveforms. M, the size of the alphabet, is usually a power of two so that each symbol represents log2M bits.

Contents

Fundamentals

In a M-ary signaling system like MFSK, an "alphabet" of M tones is established and the transmitter selects one tone at a time from the alphabet for transmission. M is usually a power of 2, so each tone transmission from the alphabet represents log2 M data bits.

MFSK is classed as an M-ary orthogonal signaling scheme because each of the M tone detection filters at the receiver responds only to its tone and not at all to the others; this independence provides the orthogonality.

Like other M-ary orthogonal schemes, the required Eb/N0 ratio for a given probability of error decreases as M increases without the need for multisymbol coherent detection. In fact, as M approaches infinity the required Eb/N0 ratio decreases asymptotically to the Shannon limit of −1.6  dB. However this decrease is slow with increasing M, and large values are impractical because of the exponential increase in required bandwidth. Typical values in practice range from 4 to 64, and MFSK is combined with another forward error correction scheme to provide additional (systematic) coding gain.

Spectral efficiency of MFSK modulation schemes decreases with increasing of modulation order M: [1]

Like any other form of angle modulation that transmits a single RF tone that varies only in phase or frequency, MFSK produces a constant envelope. This significantly relaxes the design of the RF power amplifier, allowing it to achieve greater conversion efficiencies than linear amplifiers.

2-tone MFSK

It is possible to combine two MFSK systems to increase the throughput of the link. Perhaps the most widely used 2-tone MFSK system is dual-tone multi-frequency (DTMF), better known by its AT&T trademark of "Touch Tone". Another is the Multi-frequency (MF) scheme used during the 20th century for in-band signalling on trunks between telephone exchanges. Both are examples of in-band signaling schemes, i.e., they share the user's communication channel.

Symbols in the DTMF and MF alphabets are sent as tone pairs; DTMF selects one tone from a "high" group and one from a "low" group, while MF selects its two tones from a common set. DTMF and MF use different tone frequencies largely to keep end users from interfering with inter-office signaling. In the 1970s, MF began to be replaced by digital out-of-band signaling, a conversion motivated in part by the widespread fraudulent use of MF signals by end users known as phone phreaks.

These signals are distinctive when received aurally as a rapid succession of tone pairs with almost musical quality. [2]

The simultaneous transmission of two tones directly at RF loses the constant-envelope property of the single tone system. Two simultaneous RF tones is in fact the classic "stress test" of an RF power amplifier for measuring linearity and intermodulation distortion. However, two audio tones can be sent simultaneously on a conventional, constant-envelope FM RF carrier, but the noncoherent detection of the FM signal at the receiver would destroy any signal-to-noise ratio advantage the multitone scheme might have.

MFSK in HF communications

Skywave propagation on the high frequency bands introduces random distortions that generally vary with both time and frequency. Understanding these impairments helps one understand why MFSK is such an effective and popular technique on HF.

Delay spread and coherence bandwidth

When several separate paths from transmitter to receiver exist, a condition known as multipath, they almost never have exactly the same length so they almost never exhibit the same propagation delay. Small delay differences, or delay spread, smear adjacent modulation symbols together and cause unwanted intersymbol interference.

Delay spread is inversely proportional to its frequency-domain counterpart, coherence bandwidth. This is the frequency range over which the channel gain is relatively constant. This is because summing two or more paths with different delays creates a comb filter even when the individual paths have a flat frequency response.

Coherence time and Doppler spread

Fading is a (usually random and undesired) change in path gain with time. The maximum fade rate is limited by the physics of the channel, such as the rate at which free electrons form and are recombined in the ionosphere and charged particle cloud velocities within the ionosphere. The maximum interval over which the channel gain does not appreciably change is the coherence time.

A fading channel effectively imposes an unwanted random amplitude modulation on the signal. Just as the bandwidth of intentional AM increases with the modulation rate, fading spreads a signal over a frequency range that increases with the fading rate. This is Doppler spreading, the frequency domain counterpart of coherence time. The shorter the coherence time, the greater the Doppler spread and vice versa.

Designing MFSK for HF

With appropriate parameter selection, MFSK can tolerate significant Doppler or delay spreads, especially when augmented with forward error correction. (Mitigating large amounts of Doppler and delay spread is significantly more challenging, but it is still possible). A long delay spread with little Doppler spreading can be mitigated with a relatively long MFSK symbol period to allow the channel to "settle down" quickly at the start of each new symbol. Because a long symbol contains more energy than a short one for a given transmitter power, the detector can more easily attain a sufficiently high signal-to-noise ratio (SNR). The resultant throughput reduction can be partly compensated with a large tone set so that each symbol represents several data bits; a long symbol interval allows these tones to be packed more closely in frequency while maintaining orthogonality. This is limited by the exponential growth of tone set size with the number of data bits/symbol.

Conversely, if the Doppler spread is large while the delay spread is small, then a shorter symbol period may permit coherent tone detection and the tones must be spaced more widely to maintain orthogonality.

The most challenging case is when the delay and Doppler spreads are both large, i.e., the coherence bandwidth and coherence time are both small. This is more common on auroral and EME channels than on HF, but it can occur. A short coherence time limits the symbol time, or more precisely, the maximum coherent detection interval at the receiver. If the symbol energy is too small for an adequate per-symbol detection SNR, then one alternative is transmit a symbol longer than the coherence time but to detect it with a filter much wider than one matched to the transmitted symbol. (The filter should instead be matched to the tone spectrum expected at the receiver). This will capture much of the symbol energy despite Doppler spreading, but it will necessarily do so inefficiently. A wider tone spacing, i.e., a wider channel, is also required. Forward error correction is especially helpful in this case.

MFSK schemes for HF

Because of the wide variety of conditions found on HF, a wide variety of MFSK schemes, some of them experimental, have been developed for HF. Some of them are:

  • MFSK8
  • MFSK16
  • Olivia MFSK
  • Coquelet
  • Piccolo
  • ALE (MIL-STD 188-141)
  • DominoF
  • DominoEX
  • THROB
  • CIS-36 MFSK or CROWD-36
  • XPA, XPA2

Piccolo was the original MFSK mode, developed for British government communications by Harold Robin, Donald Bailey and Denis Ralphs of the Diplomatic Wireless Service (DWS), a branch of the Foreign and Commonwealth Office. It was first used in 1962 [3] and presented to the IEE in 1963. The current specification "Piccolo Mark IV" was still in limited use by the UK government, mainly for point-to-point military radio communications, up to the late 1990s. [4] [5]

Coquelet is a similar modulation system developed by the French government for similar applications. [3]

MFSK8 and MFSK16 were developed by Murray Greenman, ZL1BPU for amateur radio communications on HF. Olivia MFSK is also an amateur radio mode. Greenman has also developed DominoF and DominoEX for NVIS radio communications on the upper MF and lower HF frequencies (1.8–7.3 MHz).

Automatic link establishment (ALE) is a protocol developed by the United States military and used mainly as an automatic signalling system between radios. It is used extensively for military and government communications worldwide and by radio amateurs. [6] [ clarification needed ]It is standardized as MIL-STD-188-141B, [7] which succeeded the older version MIL-STD-188-141A.

"CIS-36 MFSK" or "CROWD-36" (Russian : Сердолик) is the western designation of a system similar to Piccolo developed in the former Soviet Union for military communications. [8] [9] [10]

"XPA" and "XPA2" are ENIGMA-2000 [11] designations for polytonic transmissions, reportedly originating from Russian Intelligence and Foreign Ministry stations. [12] [13] Recently the system was also described as "MFSK-20".

VHF & UHF communications

MFSK modes used for VHF, UHF communications:

FSK441, JT6M and JT65 are parts of the WSJT family or radio modulation systems, developed by Joe Taylor, K1JT, for long distance amateur radio VHF communications under marginal propagation conditions. These specialized MFSK modulation systems are used over troposcattering, EME (earth-moon-earth) and meteoscattering radio paths.

PI4 [14] is a digital mode specifically designed for VUSHF beacon and propagation studies. The mode was developed as part of the Next Generation Beacons project among others used by the oldest amateur beacon in the world OZ7IGY. A decoder for PI4 is available in the PI-RX program developed by Poul-Erik Hansen, OZ1CKG.

DTMF was initially developed for telephone line signaling. It is frequently used for telecommand (remote control) applications over VHF and UHF voice channels.

See also

Related Research Articles

In electronics and telecommunications, modulation is the process of varying one or more properties of a periodic waveform, called the carrier signal, with a separate signal called the modulation signal that typically contains information to be transmitted. For example, the modulation signal might be an audio signal representing sound from a microphone, a video signal representing moving images from a video camera, or a digital signal representing a sequence of binary digits, a bitstream from a computer.

<span class="mw-page-title-main">Orthogonal frequency-division multiplexing</span> Method of encoding digital data on multiple carrier frequencies

In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a type of digital transmission used in digital modulation for encoding digital (binary) data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL internet access, wireless networks, power line networks, and 4G/5G mobile communications.

<span class="mw-page-title-main">Radioteletype</span> Radio linked electromechanical communications system

Radioteletype (RTTY) is a telecommunications system consisting originally of two or more electromechanical teleprinters in different locations connected by radio rather than a wired link. Radioteletype evolved from earlier landline teleprinter operations that began in the mid-1800s. The US Navy Department successfully tested printing telegraphy between an airplane and ground radio station in 1922. Later that year, the Radio Corporation of America successfully tested printing telegraphy via their Chatham, Massachusetts, radio station to the R.M.S. Majestic. Commercial RTTY systems were in active service between San Francisco and Honolulu as early as April 1932 and between San Francisco and New York City by 1934. The US military used radioteletype in the 1930s and expanded this usage during World War II. From the 1980s, teleprinters were replaced by personal computers (PCs) running software to emulate teleprinters.

Automatic Link Establishment, commonly known as ALE, is the worldwide de facto standard for digitally initiating and sustaining HF radio communications. ALE is a feature in an HF communications radio transceiver system that enables the radio station to make contact, or initiate a circuit, between itself and another HF radio station or network of stations. The purpose is to provide a reliable rapid method of calling and connecting during constantly changing HF ionospheric propagation, reception interference, and shared spectrum use of busy or congested HF channels.

<span class="mw-page-title-main">Frequency-shift keying</span> Data communications modulation protocol

Frequency-shift keying (FSK) is a frequency modulation scheme in which digital information is encoded on a carrier signal by periodically shifting the frequency of the carrier between several discrete frequencies. The technology is used for communication systems such as telemetry, weather balloon radiosondes, caller ID, garage door openers, and low frequency radio transmission in the VLF and ELF bands. The simplest FSK is binary FSK (BFSK), in which the carrier is shifted between two discrete frequencies to transmit binary information.

In radio communication, multipath is the propagation phenomenon that results in radio signals reaching the receiving antenna by two or more paths. Causes of multipath include atmospheric ducting, ionospheric reflection and refraction, and reflection from water bodies and terrestrial objects such as mountains and buildings. When the same signal is received over more than one path, it can create interference and phase shifting of the signal. Destructive interference causes fading; this may cause a radio signal to become too weak in certain areas to be received adequately. For this reason, this effect is also known as multipath interference or multipath distortion.

<span class="mw-page-title-main">Fading</span>

In wireless communications, fading is variation of the attenuation of a signal with various variables. These variables include time, geographical position, and radio frequency. Fading is often modeled as a random process. A fading channel is a communication channel that experiences fading. In wireless systems, fading may either be due to multipath propagation, referred to as multipath-induced fading, weather, or shadowing from obstacles affecting the wave propagation, sometimes referred to as shadow fading.

<span class="mw-page-title-main">Digital Radio Mondiale</span> Digital radio broadcasting standard

Digital Radio Mondiale is a set of digital audio broadcasting technologies designed to work over the bands currently used for analogue radio broadcasting including AM broadcasting—particularly shortwave—and FM broadcasting. DRM is more spectrally efficient than AM and FM, allowing more stations, at higher quality, into a given amount of bandwidth, using xHE-AAC audio coding format. Various other MPEG-4 and Opus codecs are also compatible, but the standard now specifies xHE-AAC.

<span class="mw-page-title-main">PSK31</span>

PSK31 or "Phase Shift Keying, 31 Baud", also BPSK31 and QPSK31, is a popular computer-sound card-generated radioteletype mode, used primarily by amateur radio operators to conduct real-time keyboard-to-keyboard chat, most often using frequencies in the high frequency amateur radio bands (near-shortwave). PSK31 is distinguished from other digital modes in that it is specifically tuned to have a data rate close to typing speed, and has an extremely narrow bandwidth, allowing many conversations in the same bandwidth as a single voice channel. This narrow bandwidth makes better use of the RF energy in a very narrow space thus allowing relatively low-power equipment to communicate globally using the same skywave propagation used by shortwave radio stations.

This is an index of articles relating to electronics and electricity or natural electricity and things that run on electricity and things that use or conduct electricity.

Olivia MFSK is an amateur radioteletype protocol, using multiple frequency-shift keying (MFSK) and designed to work in difficult conditions on shortwave bands. The signal can be accurately received even if the surrounding noise is 10 dB stronger. It is commonly used by amateur radio operators to reliably transmit ASCII characters over noisy channels using the high frequency (3–30 MHz) spectrum. The effective data rate of the Olivia MFSK protocol is 150 characters/minute.

In a digitally modulated signal or a line code, symbol rate, modulation rate or baud rate is the number of symbol changes, waveform changes, or signaling events across the transmission medium per unit of time. The symbol rate is measured in baud (Bd) or symbols per second. In the case of a line code, the symbol rate is the pulse rate in pulses per second. Each symbol can represent or convey one or several bits of data. The symbol rate is related to the gross bit rate, expressed in bits per second.

<span class="mw-page-title-main">MT63</span>

MT63 is a digital radio modulation mode for transmission in high-noise situations developed by Pawel Jalocha SP9VRC. MT63 is designed for keyboard-to-keyboard conversation modes, on HF amateur radio bands.

Multi-carrier code-division multiple access (MC-CDMA) is a multiple access scheme used in OFDM-based telecommunication systems, allowing the system to support multiple users at the same time over same frequency band.

<span class="mw-page-title-main">Carrier recovery</span>

A carrier recovery system is a circuit used to estimate and compensate for frequency and phase differences between a received signal's carrier wave and the receiver's local oscillator for the purpose of coherent demodulation.

WSJT-X is a computer program used for weak-signal radio communication between amateur radio operators. The program was initially written by Joe Taylor, K1JT, but is now open source and is developed by a small team. The digital signal processing techniques in WSJT-X make it substantially easier for amateur radio operators to employ esoteric propagation modes, such as high-speed meteor scatter and moonbounce. Additionally WSJT is able to send signal reports to spotting networks such as PSK Reporter.

Incremental frequency keying, also known as IFK or IFK+, is a modified type of MFSK modulation where the data to be transmitted is represented by the difference in frequency between the previously received tone and the currently received tone.

Fast Simple QSO(FSQ) is an amateur radio digital differential frequency modulation mode developed by Con Wassilieff ZL2AFP with Murray Greenman ZL1BPU in 2015.

Orthogonal Time Frequency Space (OTFS) is a 2D modulation technique that transforms the information carried in the Delay-Doppler coordinate system. The information is transformed in the similar time-frequency domain as utilized by the traditional schemes of modulation such as TDMA, CDMA, and OFDM. It was first used for fixed wireless, and is now a contending waveform for 6G technology due to its robustness in high-speed vehicular scenarios.

References

  1. Haykin, S., 2001. Communication Systems, John Wiley&Sons. Inc. - p. 402
  2. Scalsky, S.; Chace, M. (1999). "Digital Signals Frequently Asked Questions (Version 5), Section 1-D". World Utility Network (WUN). Retrieved 2012-11-27.
  3. 1 2 Greenman, M.; ZL1BPU (2005). "The World of Fuzzy and Digital Modes". Archived from the original on April 24, 2009. Retrieved 2008-01-06.
  4. Klingenfuss, J. (2003). Radio Data Code Manual (17th Ed.). Klingenfuss Publications. p. 163. ISBN   3-924509-56-5.
  5. Cannon, Michael (1994). Eavesdropping on the British Military. Dublin, Eire: Cara Press. pp. 103–104.
  6. Klingenfuss, J. (2003). Radio Data Code Manual (17th Ed.). Klingenfuss Publications. pp. 72–78. ISBN   3-924509-56-5.
  7. "MIL-STD 188-141B" (PDF). US Government.
  8. Klingenfuss, J. (2003). Radio Data Code Manual (17th Ed.). Klingenfuss Publications. p. 91. ISBN   3-924509-56-5.
  9. Scalsky, S.; Chace, M. (1999). "Digital Signals Frequently Asked Questions (Version 5), Table 5-E". World Utility Network (WUN). Retrieved 2012-11-27.
  10. Ian Wraith (2012-06-29). "CROWD36". GitHub . Retrieved 2017-07-30.
  11. For information about ENIGMA and ENIGMA-2000 see Notes and References section in Letter beacon.
  12. Beaumont, P. (May 2008). "Undiminished (Atencion Uno Dos Tres)". Monitoring Monthly. 3 (5): 69. ISSN   1749-7809.
  13. Beaumont, P. (July 2008). "Russian Intel (Atencion Uno Dos Tres)". Monitoring Monthly. 3 (7): 69. ISSN   1749-7809.
  14. PI4

Further reading