Angle modulation

Last updated

Angle modulation is a class of carrier modulation that is used in telecommunications transmission systems. The class comprises frequency modulation (FM) and phase modulation (PM), and is based on altering the frequency or the phase, respectively, of a carrier signal to encode the message signal. This contrasts with varying the amplitude of the carrier, practiced in amplitude modulation (AM) transmission, the earliest of the major modulation methods used widely in early radio broadcasting.

Contents

Foundation

In general form, an analog modulation process of a sinusoidal carrier wave may be described by the following equation: [1]

.

A(t) represents the time-varying amplitude of the sinusoidal carrier wave and the cosine-term is the carrier at its angular frequency , and the instantaneous phase deviation . This description directly provides the two major groups of modulation, amplitude modulation and angle modulation. In amplitude modulation, the angle term is held constant, while in angle modulation the term A(t) is constant and the second term of the equation has a functional relationship to the modulating message signal.

The functional form of the cosine term, which contains the expression of the instantaneous phase as its argument, provides the distinction of the two types of angle modulation, frequency modulation (FM) and phase modulation (PM). [2] In FM the message signal causes a functional variation of the carrier frequency. These variations are controlled by both the frequency and the amplitude of the modulating wave. In phase modulation, the instantaneous phase deviation of the carrier is controlled by the modulating waveform, such that the principal frequency remains constant.

For frequency modulation, the instantaneous frequency of an angle-modulated carrier wave is given by the first derivative with respect to time of the instantaneous phase:

in which may be defined as the instantaneous frequency deviation, measured in rad/s.

In principle, the modulating signal in both frequency and phase modulation may either be analog in nature, or it may be digital. In general, however, when using digital signals to modify the carrier wave, the method is called keying , rather than modulation. [3] Thus, telecommunications modems use frequency-shift keying (FSK), phase-shift keying (PSK), or amplitude-phase keying (APK), or various combinations. Furthermore, another digital modulation is line coding, which uses a baseband carrier, rather than a passband wave.

The methods of angle modulation can provide better discrimination against interference and noise than amplitude modulation. [2] These improvements, however, are a tradeoff against increased bandwidth requirements.

Frequency modulation

Frequency modulation is widely used for FM broadcasting of radio programming, and largely supplanted amplitude modulation for this purpose starting in the 1930s, with its invention by American engineer Edwin Armstrong in 1933. [4] FM also has many other applications, such as in two-way radio communications, and in FM synthesis for music synthesizers.

Phase modulation

Phase modulation is important in major application areas including cellular and satellite telecommunications, as well as in data networking methods, such as in some digital subscriber line systems, and WiFi.

The combination of phase modulation with amplitude modulation, practiced as early as 1874 by Thomas Edison in the quadruplex telegraph for transmitting four signals, two each in both directions of transmission, constitutes the polar modulation technique.

Related Research Articles

<span class="mw-page-title-main">Amplitude modulation</span> Radio modulation via wave amplitude

Amplitude modulation (AM) is a modulation technique used in electronic communication, most commonly for transmitting messages with a radio wave. In amplitude modulation, the amplitude of the wave is varied in proportion to that of the message signal, such as an audio signal. This technique contrasts with angle modulation, in which either the frequency of the carrier wave is varied, as in frequency modulation, or its phase, as in phase modulation.

<span class="mw-page-title-main">Frequency modulation</span> Encoding of information in a carrier wave by varying the instantaneous frequency of the wave

Frequency modulation (FM) is the encoding of information in a carrier wave by varying the instantaneous frequency of the wave. The technology is used in telecommunications, radio broadcasting, signal processing, and computing.

<span class="mw-page-title-main">Frequency modulation synthesis</span> Form of sound synthesis

Frequency modulation synthesis is a form of sound synthesis whereby the frequency of a waveform is changed by modulating its frequency with a modulator. The (instantaneous) frequency of an oscillator is altered in accordance with the amplitude of a modulating signal.

In electronics and telecommunications, modulation is the process of varying one or more properties of a periodic waveform, called the carrier signal, with a separate signal called the modulation signal that typically contains information to be transmitted. For example, the modulation signal might be an audio signal representing sound from a microphone, a video signal representing moving images from a video camera, or a digital signal representing a sequence of binary digits, a bitstream from a computer.

Phase modulation (PM) is a modulation pattern for conditioning communication signals for transmission. It encodes a message signal as variations in the instantaneous phase of a carrier wave. Phase modulation is one of the two principal forms of angle modulation, together with frequency modulation.

<span class="mw-page-title-main">Phase velocity</span> Rate at which the phase of the wave propagates in space

The phase velocity of a wave is the rate at which the wave propagates in any medium. This is the velocity at which the phase of any one frequency component of the wave travels. For such a component, any given phase of the wave will appear to travel at the phase velocity. The phase velocity is given in terms of the wavelength λ (lambda) and time period T as

<span class="mw-page-title-main">Single-sideband modulation</span> Type of modulation

In radio communications, single-sideband modulation (SSB) or single-sideband suppressed-carrier modulation (SSB-SC) is a type of modulation used to transmit information, such as an audio signal, by radio waves. A refinement of amplitude modulation, it uses transmitter power and bandwidth more efficiently. Amplitude modulation produces an output signal the bandwidth of which is twice the maximum frequency of the original baseband signal. Single-sideband modulation avoids this bandwidth increase, and the power wasted on a carrier, at the cost of increased device complexity and more difficult tuning at the receiver.

<span class="mw-page-title-main">Baseband</span> Range of frequencies occupied by an unmodulated signal

In telecommunications and signal processing, baseband is the range of frequencies occupied by a signal that has not been modulated to higher frequencies. Baseband signals typically originate from transducers, converting some other variable into an electrical signal. For example, the electronic output of a microphone is a baseband signal that is analogous to the applied voice audio. In conventional analog radio broadcasting, the baseband audio signal is used to modulate an RF carrier signal of a much higher frequency.

Double-sideband suppressed-carrier transmission (DSB-SC) is transmission in which frequencies produced by amplitude modulation (AM) are symmetrically spaced above and below the carrier frequency and the carrier level is reduced to the lowest practical level, ideally being completely suppressed.

In signal processing, group delay and phase delay are delay times experienced by a signal's various frequency components when the signal passes through a linear time-invariant system (LTI), such as a microphone, coaxial cable, amplifier, loudspeaker, telecommunications system or ethernet cable. These delays are generally frequency dependent, which means that different frequency components experience different delays. As a result, the signal's waveform experiences distortion as it passes through the system. This distortion can cause problems such as poor fidelity in analog video and analog audio, or a high bit-error rate in a digital bit stream. For a modulation signal, the information carried by the signal is carried exclusively in the wave envelope. Group delay therefore operates only with the frequency components derived from the envelope.

<span class="mw-page-title-main">Sideband</span> In radio communications, a band of frequencies higher or lower than the carrier frequency

In radio communications, a sideband is a band of frequencies higher than or lower than the carrier frequency, that are the result of the modulation process. The sidebands carry the information transmitted by the radio signal. The sidebands comprise all the spectral components of the modulated signal except the carrier. The signal components above the carrier frequency constitute the upper sideband (USB), and those below the carrier frequency constitute the lower sideband (LSB). All forms of modulation produce sidebands.

<span class="mw-page-title-main">Chirp</span> Signal in which the frequency changes

A chirp is a signal in which the frequency increases (up-chirp) or decreases (down-chirp) with time. In some sources, the term chirp is used interchangeably with sweep signal. It is commonly applied to sonar, radar, and laser systems, and to other applications, such as in spread-spectrum communications. This signal type is biologically inspired and occurs as a phenomenon due to dispersion. It is usually compensated for by using a matched filter, which can be part of the propagation channel. Depending on the specific performance measure, however, there are better techniques both for radar and communication. Since it was used in radar and space, it has been adopted also for communication standards. For automotive radar applications, it is usually called linear frequency modulated waveform (LFMW).

<span class="mw-page-title-main">Carrier wave</span> Waveform that is modulated with a signal to convey information

In telecommunications, a carrier wave, carrier signal, or just carrier, is a waveform that is modulated (modified) with an information-bearing signal(called the message signal or modulation signal) for the purpose of conveying information.

<span class="mw-page-title-main">Sine wave</span> Mathematical curve that describes a smooth repetitive oscillation; continuous wave

A sine wave, sinusoidal wave, or just sinusoid is a mathematical curve defined in terms of the sine trigonometric function, of which it is the graph. It is a type of continuous wave and also a smooth periodic function. It occurs often in mathematics, as well as in physics, engineering, signal processing and many other fields.

Continuous phase modulation (CPM) is a method for modulation of data commonly used in wireless modems. In contrast to other coherent digital phase modulation techniques where the carrier phase abruptly resets to zero at the start of every symbol, with CPM the carrier phase is modulated in a continuous manner. For instance, with QPSK the carrier instantaneously jumps from a sine to a cosine whenever one of the two message bits of the current symbol differs from the two message bits of the previous symbol. This discontinuity requires a relatively large percentage of the power to occur outside of the intended band, leading to poor spectral efficiency. Furthermore, CPM is typically implemented as a constant-envelope waveform, i.e., the transmitted carrier power is constant. Therefore, CPM is attractive because the phase continuity yields high spectral efficiency, and the constant envelope yields excellent power efficiency. The primary drawback is the high implementation complexity required for an optimal receiver.

In mathematics and signal processing, an analytic signal is a complex-valued function that has no negative frequency components. The real and imaginary parts of an analytic signal are real-valued functions related to each other by the Hilbert transform.

<span class="mw-page-title-main">Phasor</span> Complex number representing a particular sine wave

In physics and engineering, a phasor is a complex number representing a sinusoidal function whose amplitude, angular frequency, and initial phase are time-invariant. It is related to a more general concept called analytic representation, which decomposes a sinusoid into the product of a complex constant and a factor depending on time and frequency. The complex constant, which depends on amplitude and phase, is known as a phasor, or complex amplitude, and sinor or even complexor.

<span class="mw-page-title-main">In-phase and quadrature components</span> Mathematical technique for manipulating signals etc.

A sinusoid with modulation can be decomposed into, or synthesized from, two amplitude-modulated sinusoids that are offset in phase by one-quarter cycle. All three sinusoids have the same center frequency. The two amplitude-modulated sinusoids are known as the in-phase (I) and quadrature (Q) components, which describes their relationships with the amplitude- and phase-modulated carrier.

Multiphoton intrapulse interference phase scan (MIIPS) is a method used in ultrashort laser technology that simultaneously measures, and compensates femtosecond laser pulses using an adaptive pulse shaper. When an ultrashort laser pulse reaches a duration of less than a few hundred femtosecond, it becomes critical to characterize its duration, its temporal intensity curve, or its electric field as a function of time. Classical photodetectors measuring the intensity of light are still too slow to allow for a direct measurement, even with the fastest photodiodes or streak cameras.

<span class="mw-page-title-main">Multidimensional modulation</span>

Multidimensional modulation is modifying or multiplying an MD signal with another signal that carries some information or message. In the frequency domain, the signal is moved from one frequency to another.

References

  1. AT&T, Telecommunication Transmission Engineering, Volume 1—Principles, 2nd Edition, Bell Center for Technical Education (1977)
  2. 1 2 Simon Haykin, Communication Systems, John Wiley & Sons (2001), ISBN   0-471-17869-1, p. 107
  3. Whitham D. Reeve, Subscriber Loop Signaling and Transmission Handbook- Digital, IEEE Press (1995), ISBN   0-7803-0440-3, p. 5.
  4. Armstrong, E. H. (May 1936), "A Method of Reducing Disturbances in Radio Signaling by a System of Frequency Modulation", Proc. IRE, 24 (5): 689–740

Further reading