Slow-scan television

Last updated
SSTV transmissions often include station call signs, RST reception reports, and Amateur radio jargon. UU4JM SSTV 01.PNG
SSTV transmissions often include station call signs, RST reception reports, and Amateur radio jargon.

Slow-scan television (SSTV) is a picture transmission method, used mainly by amateur radio operators, to transmit and receive static pictures via radio in monochrome or color.

Contents

A literal term for SSTV is narrowband television. Analog broadcast television requires at least 6 MHz wide channels, because it transmits 25 or 30 picture frames per second (see ITU analog broadcast standards), but SSTV usually only takes up to a maximum of 3 kHz of bandwidth. It is a much slower method of still picture transmission, usually taking from about eight seconds to a couple of minutes, depending on the mode used, to transmit one image frame.

Since SSTV systems operate on voice frequencies, amateurs use it on shortwave (also known as HF by amateur radio operators), VHF and UHF radio.

History

Concept

The concept of SSTV was introduced by Copthorne Macdonald [1] in 195758. [2] He developed the first SSTV system using an electrostatic monitor and a vidicon tube. It was deemed sufficient to use 120 lines and about 120 pixels per line to transmit a black-and-white still picture within a 3 kHz telephone channel. First live tests were performed on the 11-meter ham band  which was later given to the CB service in the US. In the 1970s, two forms of paper printout receivers were invented by hams.

Early usage in space exploration

Astronaut Gordon Cooper, SSTV transmission from Faith 7 S63-07856.jpg
Astronaut Gordon Cooper, SSTV transmission from Faith 7

SSTV was used to transmit images of the far side of the Moon from Luna 3. [3]

The first space television system was called Seliger-Tral-D and was used aboard Vostok. Vostok was based on an earlier videophone project which used two cameras, with persistent LI-23 iconoscope tubes. Its output was 10 frames per second at 100 lines per frame video signal.

A similar concept, also named SSTV, was used on Faith 7, [4] as well as on the early years of the NASA Apollo program.

NASA slow-scan image from the Moon Apollo 11 first step.jpg
NASA slow-scan image from the Moon

The Apollo TV cameras used SSTV to transmit images from inside Apollo 7, Apollo 8, and Apollo 9, as well as the Apollo 11 Lunar Module television from the Moon. NASA had taken all the original tapes and erased them for use on subsequent missions; however, the Apollo 11 Tape Search and Restoration Team formed in 2003 tracked down the highest-quality films among the converted recordings of the first broadcast, pieced together the best parts, then contracted a specialist film restoration company to enhance the degraded black-and-white film and convert it into digital format for archival records. [5]

Progression

Commercial systems started appearing in the United States in 1970, after the FCC had legalized the use of SSTV for advanced level amateur radio operators in 1968.

SSTV originally required quite a bit of specialized equipment. Usually there was a scanner or camera, a modem to create and receive the characteristic audio howl, and a cathode-ray tube from a surplus radar set. The special cathode-ray tube would have "long persistence" phosphors that would keep a picture visible for about ten seconds.

The modem would generate audio tones between 1,200 and 2,300 Hz from picture signals, and picture signals from received audio tones. The audio would be attached to a radio receiver and transmitter.

Current systems

A modern system, having gained ground since the early 1990s, uses a personal computer and special software in place of much of the custom equipment. The sound card of a PC, with special processing software, acts as a modem. The computer screen provides the output. A small digital camera or digital photos provide the input.

SSTV signal.jpg
1
2
3
4
A spectrogram of the beginning of an SSTV transmission
1
Calibration header
2
VIS code
3
RGB scanlines
4
Sync pulses

Modulation

Like the similar radiofax mode, SSTV is an analog signal. SSTV uses frequency modulation, in which every different value of brightness in the image gets a different audio frequency. In other words, the signal frequency shifts up or down to designate brighter or darker pixels, respectively. Color is achieved by sending the brightness of each color component (usually red, green and blue) separately. This signal can be fed into an SSB transmitter, which in part modulates the carrier signal.

There are a number of different modes of transmission, but the most common ones are Martin M1 (popular in Europe) and Scottie S1 (used mostly in the USA). [7] Using one of these, an image transfer takes 114 (M1) or 110 (S1) seconds. Some black and white modes take only 8 seconds to transfer an image.

A calibration header is sent before the image. It consists of a 300-millisecond leader tone at 1,900 Hz, a 10 ms break at 1,200 Hz, another 300-millisecond leader tone at 1,900 Hz, followed by a digital VIS (vertical interval signaling) code, identifying the transmission mode used. The VIS consists of bits of 30 milliseconds in length. The code starts with a start bit at 1,200 Hz, followed by 7 data bits (LSB first; 1,100 Hz for 1, 1,300 Hz for 0). An even parity bit follows, then a stop bit at 1,200 Hz. For example, the bits corresponding the decimal numbers 44 or 32 imply that the mode is Martin M1, whereas the number 60 represents Scottie S1.

Scanlines

Slow-scan test card Moderni SSTV.jpg
Slow-scan test card

A transmission consists of horizontal lines, scanned from left to right. The color components are sent separately one line after another. The color encoding and order of transmission can vary between modes. Most modes use an RGB color model; some modes are black-and-white, with only one channel being sent; other modes use a YC color model, which consists of luminance (Y) and chrominance (R–Y and B–Y). The modulating frequency changes between 1,500 and 2,300 Hz, corresponding to the intensity (brightness) of the color component. The modulation is analog, so even though the horizontal resolution is often defined as 256 or 320 pixels, they can be sampled using any rate. The image aspect ratio is conventionally 4:3. Lines usually end in a 1,200 Hz horizontal synchronization pulse of 5 milliseconds (after all color components of the line have been sent); in some modes, the synchronization pulse lies in the middle of the line.

Modes

Below is a table of some of the most common SSTV modes and their differences. [7] These modes share many properties, such as synchronization and/or frequencies and grey/color level correspondence. Their main difference is the image quality, which is proportional to the time taken to transfer the image and in the case of the AVT modes, related to synchronous data transmission methods and noise resistance conferred by the use of interlace.

FamilyDeveloperNameColorTimeLines
AVTBen Blish-Williams, AA7AS / AEA8BW or 1 of R, G, or B8 s128×128
16wBW or 1 of R, G, or B16 s256×128
16hBW or 1 of R, G, or B16 s128×256
32BW or 1 of R, G, or B32 s256×256
24 RGB 24 s128×128
48w RGB 48 s256×128
48h RGB 48 s128×256
104 RGB 96 s256×256
MartinMartin Emmerson - G3OQDM1 RGB 114 s240¹
M2 RGB 58 s240¹
RobotRobot SSTV8BW or 1 of R, G or B8 s120
12 YUV 12 s128 luma, 32/32 chroma × 120
24 YUV 24 s128 luma, 64/64 chroma × 120
32BW or 1 of R, G or B32 s256 × 240
36 YUV 36 s256 luma, 64/64 chroma × 240
72 YUV 72 s256 luma, 128/128 chroma × 240
ScottieEddie Murphy - GM3SBCS1 RGB 110 s240¹
S2 RGB 71 s240¹
DX RGB 269 s320 x 256
¹ Martin and Scottie modes actually send 256 scanlines, but the first 16 are usually grayscale.

The mode family called AVT (for Amiga Video Transceiver) was originally designed by Ben Blish-Williams (N4EJI, then AA7AS) for a custom modem attached to an Amiga computer, which was eventually marketed by AEA corporation.

The Scottie and Martin modes were originally implemented as ROM enhancements for the Robot Research Corporation SSTV unit. The exact line timings for the Martin M1 mode are given in this reference. [8]

The Robot SSTV modes were designed by Robot Research Corporation for their own SSTV units.

All four sets of SSTV modes are now available in various PC-resident SSTV systems and no longer depend upon the original hardware.

AVT

AVT is an abbreviation of "Amiga Video Transceiver", software and hardware modem originally developed by "Black Belt Systems" (USA) around 1990 for the Amiga home computer popular all over the world before the IBM PC family gained sufficient audio quality with the help of special sound cards. These AVT modes differ radically from the other modes mentioned above, in that they are synchronous, that is, they have no per-line horizontal synchronization pulse but instead use the standard VIS vertical signal to identify the mode, followed by a frame-leading digital pulse train which pre-aligns the frame timing by counting first one way and then the other, allowing the pulse train to be locked in time at any single point out of 32 where it can be resolved or demodulated successfully, after which they send the actual image data, in a fully synchronous and typically interlaced mode.

Interlace, no dependence upon sync, and interline reconstruction gives the AVT modes a better noise resistance than any of the other SSTV modes. Full frame images can be reconstructed with reduced resolution even if as much as 1/2 of the received signal was lost in a solid block of interference or fade because of the interlace feature. For instance, first the odd lines are sent, then the even lines. If a block of odd lines are lost, the even lines remain, and a reasonable reconstruction of the odd lines can be created by a simple vertical interpolation, resulting in a full frame of lines where the even lines are unaffected, the good odd lines are present, and the bad odd lines have been replaced with an interpolation. This is a significant visual improvement over losing a non-recoverable contiguous block of lines in a non-interlaced transmission mode. Interlace is an optional mode variation, however without it, much of the noise resistance is sacrificed, although the synchronous character of the transmission ensures that intermittent signal loss does not cause loss of the entire image. The AVT modes are mainly used in Japan and the United States. There is a full set of them in terms of black and white, color, and scan line counts of 128 and 256. Color bars and greyscale bars may be optionally overlaid top and/or bottom, but the full frame is available for image data unless the operator chooses otherwise. For receiving systems where timing was not aligned with the incoming image's timing, the AVT system provided for post-receive re-timing and alignment.

Other modes

FamilyDeveloperNameTime [sec]ResolutionColorVISVIS+P
PD [9] Paul Turner, G4IJE
Don Rotier, K0HEO-SK
PD5050.000000320 x 256G, R-Y, B-Y
PD9089.989120320 x 2569999
PD120126.103040640 x 4969595
PD160160.883200512 x 40098226
PD180187.051520640 x 4969696
PD240248.000000640 x 49697225
PD290289.000000800 x 616

Frequencies

Using a receiver capable of demodulating single-sideband modulation, SSTV transmissions can be heard on the following frequencies:

BandFrequencySideband
80 meters 3.845 MHz (3.73 in Europe)LSB
43 meters 6.925 MHz (Pirate Radio)USB
40 meters 7.171 MHz (7.165 in Europe)LSB
40 meters 7.180 MHz (New Suggested Frequency to include General Classes)LSB
40 meters 7.214 MHz Australian Digital SSTV frequency (Easypal and DIGTRX)LSB
20 meters 14.230 MHz Frequency 1 Analog.USB
20 meters 14.233 MHz Frequency 2 Analog to alleviate crowding on 14.230.USB
15 meters 21.340 MHzUSB
10 meters 28.680 MHzUSB
11 meters 27.700 MHz (Pirate Radio)USB

Media

External videos
Nuvola apps kaboodle.svg Video showing images and the sound generated when sending them as SSTV audio. on YouTube

In Valve's 2007 video game Portal , there was an internet update of the program files on 3 March 2010. This update gave a challenge to find hidden radios in each test chamber and bring them to certain spots to receive hidden signals. The hidden signals became part of an ARG-style analysis by fans of the game hinting at a sequel of the game  some sounds were of Morse code strings that implied the restarting of a computer system, while others could be decoded as purposefully low-quality SSTV images. When some of these decoded images were put together in the correct order, it revealed a decodable MD5 hash for a bulletin-board system phone number (425)822-5251. It provides multiple ASCII art images relating to the game and its potential sequel. [10] [11] [12] The sequel, Portal 2 , was later confirmed. According to a hidden commentary node SSTV image from Portal 2, the BBS is running from a Linux-based computer and is linked to a 2,400 bit/s modem from 1987. It is hooked up in an unspecified Valve developer's kitchen. They kept spare modems in case one failed, and one did. The BBS only sends about 20 megabytes of data in total.

In the aforementioned sequel, Portal 2, there are four SSTV images. One is broadcast in a Rattman den. When decoded, this image is a very subtle hint towards the game's ending. The image is of a Weighted Companion Cube on the Moon. The other three images are decoded from a commentary node in another Rattman den. These 3 images are slides with bullet points on how the ARG was done, and what the outcome was, such as how long it took the combined internet to solve the puzzle (the average completion time was 7 1/2 hours). [13]

In another video game, Kerbal Space Program , there is a small hill in the southern hemisphere on the planet "Duna", which transmits a color SSTV image in Robot 24 format. It depicts four astronauts standing next to what is either the Lunar Lander from the Apollo missions, or an unfinished pyramid. Above them is the game's logo and three circles. [14] It emits sound if an object is near the hill.[ citation needed ]

Caparezza, an Italian songwriter, inserted an image on the ghost track of his album Prisoner 709 .

The Aphex Twin release 2 Remixes by AFX contains a track that displays an SSTV image that has text about the programs used to make the release as well as a picture of Richard sitting on a couch.

See also

Related Research Articles

<span class="mw-page-title-main">Analog television</span> Television that uses analog signals

Analog television is the original television technology that uses analog signals to transmit video and audio. In an analog television broadcast, the brightness, colors and sound are represented by amplitude, phase and frequency of an analog signal.

<span class="mw-page-title-main">Digital television</span> Television transmission using digital encoding

Digital television (DTV) is the transmission of television signals using digital encoding, in contrast to the earlier analog television technology which used analog signals. At the time of its development it was considered an innovative advancement and represented the first significant evolution in television technology since color television in the 1950s. Modern digital television is transmitted in high-definition television (HDTV) with greater resolution than analog TV. It typically uses a widescreen aspect ratio in contrast to the narrower format (4:3) of analog TV. It makes more economical use of scarce radio spectrum space; it can transmit up to seven channels in the same bandwidth as a single analog channel, and provides many new features that analog television cannot. A transition from analog to digital broadcasting began around 2000. Different digital television broadcasting standards have been adopted in different parts of the world; below are the more widely used standards:

<span class="mw-page-title-main">NTSC</span> Analog television system

NTSC is the first American standard for analog television, published in 1941. In 1961, it was assigned the designation System M. It is also known as EIA standard 170.

<span class="mw-page-title-main">PAL</span> Colour encoding system for analogue television

Phase Alternating Line (PAL) is a colour encoding system for analog television. It was one of three major analogue colour television standards, the others being NTSC and SECAM. In most countries it was broadcast at 625 lines, 50 fields per second, and associated with CCIR analogue broadcast television systems B, D, G, H, I or K. The articles on analog broadcast television systems further describe frame rates, image resolution, and audio modulation.

<span class="mw-page-title-main">Interlaced video</span> Technique for doubling the perceived frame rate of a video display

Interlaced video is a technique for doubling the perceived frame rate of a video display without consuming extra bandwidth. The interlaced signal contains two fields of a video frame captured consecutively. This enhances motion perception to the viewer, and reduces flicker by taking advantage of the phi phenomenon.

<span class="mw-page-title-main">ATSC standards</span> Standards for digital television in the US

Advanced Television Systems Committee (ATSC) standards are an International set of standards for broadcast and digital television transmission over terrestrial, cable and satellite networks. It is largely a replacement for the analog NTSC standard and, like that standard, is used mostly in the United States, Mexico, Canada, South Korea and Trinidad & Tobago. Several former NTSC users, such as Japan, have not used ATSC during their digital television transition, because they adopted other systems such as ISDB developed by Japan, and DVB developed in Europe, for example.

Broadcasttelevision systems are the encoding or formatting systems for the transmission and reception of terrestrial television signals.

PALplus is an analogue television broadcasting system aimed to improve and enhance the PAL format by allowing 16:9 aspect ratio broadcasts, while remaining compatible with existing television receivers, defined by International Telecommunication Union (ITU) recommendation BT.1197-1. Introduced in 1993, it followed experiences with the HD-MAC and D2-MAC, hybrid analogue-digital widescreen formats that were incompatible with PAL receivers. It was developed at the University of Dortmund in Germany, in cooperation with German terrestrial broadcasters and European and Japanese manufacturers. The system had some adoption across Europe during the late 1990s and helped introduce widescreen TVs in the market, but never became mainstream.

Radiofacsimile, radiofax or HF fax is an analogue mode for transmitting monochrome images via high frequency (HF) radio waves. It was the predecessor to slow-scan television (SSTV). It was the primary method of sending photographs from remote sites from the 1930s to the early 1970s. It is still in limited use for transmitting weather charts and information to ships at sea.

HD-MAC was a broadcast television standard proposed by the European Commission in 1986, as part of Eureka 95 project. It belongs to the MAC - Multiplexed Analogue Components standard family. It is an early attempt by the EEC to provide High-definition television (HDTV) in Europe. It is a complex mix of analogue signal, multiplexed with digital sound, and assistance data for decoding (DATV). The video signal was encoded with a modified D2-MAC encoder.

The Automatic Picture Transmission (APT) system is an analog image transmission system developed for use on weather satellites. It was introduced in the 1960s and over four decades has provided image data to relatively low-cost user stations at locations in most countries of the world. A user station anywhere in the world can receive local data at least twice a day from each satellite as it passes nearly overhead.

Progressive segmented Frame is a scheme designed to acquire, store, modify, and distribute progressive scan video using interlaced equipment.

Low-definition television (LDTV) refers to TV systems that have a lower screen resolution than standard-definition television systems. The term is usually used in reference to digital television, in particular when broadcasting at the same resolution as low-definition analog television systems. Mobile DTV systems usually transmit in low definition, as do all slow-scan television systems.

The 405-line monochrome analogue television broadcasting system was the first fully electronic television system to be used in regular broadcasting. The number of television lines influences the image resolution, or quality of the picture.

<span class="mw-page-title-main">Apollo TV camera</span> Outerspace broadcasting device

The Apollo program used several television cameras in its space missions in the late 1960s and 1970s; some of these Apollo TV cameras were also used on the later Skylab and Apollo–Soyuz Test Project missions. These cameras varied in design, with image quality improving significantly with each successive model. Two companies made these various camera systems: RCA and Westinghouse. Originally, these slow-scan television (SSTV) cameras, running at 10 frames per second (fps), produced only black-and-white pictures and first flew on the Apollo 7 mission in October 1968. A color camera – using a field-sequential color system – flew on the Apollo 10 mission in May 1969, and every mission after that. The color camera ran at the North American standard 30 fps. The cameras all used image pickup tubes that were initially fragile, as one was irreparably damaged during the live broadcast of the Apollo 12 mission's first moonwalk. Starting with the Apollo 15 mission, a more robust, damage-resistant camera was used on the lunar surface. All of these cameras required signal processing back on Earth to make the frame rate and color encoding compatible with analog broadcast television standards.

MUSE, commercially known as Hi-Vision was a Japanese analog high-definition television system, with design efforts going back to 1979.

Television standards conversion is the process of changing a television transmission or recording from one video system to another. Converting video between different numbers of lines, frame rates, and color models in video pictures is a complex technical problem. However, the international exchange of television programming makes standards conversion necessary so that video may be viewed in another nation with a differing standard. Typically video is fed into video standards converter which produces a copy according to a different video standard. One of the most common conversions is between the NTSC and PAL standards.

Broadcast-safe video is a term used in the broadcast industry to define video and audio compliant with the technical or regulatory broadcast requirements of the target area or region the feed might be broadcasting to. In the United States, the Federal Communications Commission (FCC) is the regulatory authority; in most of Europe, standards are set by the European Broadcasting Union (EBU).

High-definition television (HDTV) describes a television or video system which provides a substantially higher image resolution than the previous generation of technologies. The term has been used since at least 1933; in more recent times, it refers to the generation following standard-definition television (SDTV). It is the current de facto standard video format used in most broadcasts: terrestrial broadcast television, cable television, satellite television.

This glossary defines terms that are used in the document "Defining Video Quality Requirements: A Guide for Public Safety", developed by the Video Quality in Public Safety (VQIPS) Working Group. It contains terminology and explanations of concepts relevant to the video industry. The purpose of the glossary is to inform the reader of commonly used vocabulary terms in the video domain. This glossary was compiled from various industry sources.

References

Notes

  1. "Copthorne Macdonald's Home Page". January 2, 2014. Archived from the original on 2014-01-02.
  2. Miller, Don. "SSTV history" . Retrieved May 9, 2006.
  3. Luna 3. Archived 2007-09-29 at the Wayback Machine .
  4. 1 2 Sven Grahn. "The Mercury-Atlas-9 slow-scan TV experiment". Space Radio Notes.
  5. Andrew Letten (2010-10-26). "'Lost' Apollo 11 Moonwalk tapes restored". Cosmos Online. Archived from the original on July 20, 2014. Retrieved 4 November 2010. SYDNEY: After a three-year search for the lost Apollo 11 tapes and an exhaustive six-year restoration project, digitally remastered footage of the historic Moonwalk is almost ready to be broadcast.
  6. Peltzer, K.E. (April 1966). "Apollo Unified S-Band System" (PDF). Archived (PDF) from the original on 6 December 2023.
  7. 1 2 Langner, John. "SSTV Transmission Modes". Archived from the original on February 16, 2003. Retrieved May 8, 2006.
  8. Cordesses, L. and R (F2DC) (2003). ""Some Thoughts on "Real-Time" SSTV Processing."". QEX. Retrieved September 2, 2008.{{cite web}}: CS1 maint: numeric names: authors list (link)
  9. Turner, Paul. "The development of the PD modes" . Retrieved 2021-06-05.
  10. Leahy, Brian (2010-03-01). "Portal Patch Adds Morse Code, Achievement – Portal 2 Speculation Begins". Shacknews . Retrieved 2010-03-02.
  11. Mastrapa, Gus (2010-03-02). "Geeky Clues Suggest Portal Sequel Is Coming". Wired . Retrieved 2010-03-02.
  12. Gaskill, Jake (2010-03-03). "Rumor: Valve To Make Portal 2 Announcement During GDC 2010". X-Play . Archived from the original on 2018-01-08. Retrieved 2010-03-03.
  13. Results of one user decoding images with SSTV software. http://forums.steampowered.com/forums/showthread.php?t=1854243 Archived 2015-04-16 at the Wayback Machine . Retrieved 2012-08-14.
  14. Decoding the KSP SSTV signal on YouTube

Modem software: