Radiofax

Last updated

Radiofacsimile, radiofax or HF fax is an analogue mode for transmitting grayscale images via high frequency (HF) radio waves. It was the predecessor to slow-scan television (SSTV). It was the primary method of sending photographs from remote sites (especially islands) from the 1930s to the early 1970s. It is still in limited use for transmitting weather charts and information to ships at sea.

Contents

History

Children read a wirelessly-transmitted newspaper in 1938. Krant per fax - Faxed newspaper (4193509648).jpg
Children read a wirelessly-transmitted newspaper in 1938.
December 1945 advertisement for New York City FM station WGHF, featuring the station's experimental broadcast facsimile service using a subcarrier transmission

Richard H. Ranger, an electrical engineer working at Radio Corporation of America (RCA), invented a method for sending photographs through radio transmissions. He called his system the wireless photoradiogram, in contrast to the fifty-year-old telefacsimile devices which used first telegraphic wires, and then later was adapted to use the newer telephone wires.

On 29 November 1924, Ranger's system was used to send a photograph from New York City to London. It was an image of President Calvin Coolidge and was the first transoceanic radio transmission of a photograph. Also that year, AT&T engineer Herbert E. Ives transmitted the first color photograph. [2]

Charles J. Young, son of the RCA founder Owen D. Young, and Ernst Alexanderson, developed a radio facsimile system for General Electric. On 12 August 1931 this system successfully transmitted a copy of the Union-Star newspaper of Schenectady, New York to the transatlantic liners America and Minnekahda. It took 15 minutes to copy a single page measuring 8+12 by 9 inches (220 by 230 mm). [3]

The Finch Facsimile system was introduced in the late 1930s by William G. H. Finch, and used to transmit a "radio newspaper" to private homes. The system used ordinary, home, radio-receivers equipped with Finch's thermal paper printer. The radiofacsimile of the newspaper was transmitted by commercial AM radio stations. [4] 

During World War II thousands of photographs were transmitted from Europe, and from the Pacific Islands, to the United States. The major news agencies (AP, UPI, Reuters), maintained their own transoceanic radio facsimile transmitters as close to the action as they could. The iconic flag raising on Iwo Jima was printed in hundreds of American newspapers within a day of being taken, because it was transmitted from Guam to New York City by wireless radiofacsimile, a distance of 12,781 km (7,942 mi). [5] [ better source needed ]

Beginning in the late 1930s, the Finch Facsimile system was used to transmit a "radio newspaper" to private homes via commercial AM radio stations and ordinary radio receivers equipped with Finch's printer, which used thermal paper. Sensing a new and potentially golden opportunity, competitors soon entered the field, but the printer and special paper were expensive luxuries, AM radio transmission was very slow and vulnerable to static, and the newspaper was too small. After more than ten years of repeated attempts by Finch and others to establish such a service as a viable business, the public, apparently quite content with its cheaper and much more substantial home-delivered daily newspapers, and with conventional spoken radio bulletins to provide any "hot" news, still showed only a passing curiosity about the new medium. [4]

By the late 1940s, radiofax receivers were sufficiently miniaturized to be fitted beneath the dashboard of Western Union's "Telecar" telegram delivery vehicles. [6]

In the 1960s, the United States Army transmitted the first photograph via satellite facsimile to Puerto Rico from the Deal Test Site using the Courier satellite.

Weatherfax

UK Marine Radiofax Broadcast, received on April 24, 2024 Weerkaart 24 april 2024.png
UK Marine Radiofax Broadcast, received on April 24, 2024

A decade after the introduction of radiofax National Weather Service (NWS) began transmitting weather maps using the radiofax technology. The NWS named this new service weatherfax (portmanteau word from the words "weather facsimile") The cover of the regular NOAA publication on frequencies and schedules states "Worldwide Marine Radiofacsimile Broadcast Schedules".

Facsimile machines were used in the 1950s to transmit weather charts across the United States via land-lines first and then internationally via HF radio. Radio transmission of weather charts provides an enormous amount of flexibility to marine and aviation users for they now have the latest weather information and forecasts at their fingertips to use in the planning of voyages.

Radiofax relies on facsimile technology where printed information is scanned line by line and encoded into an electrical signal which can then be transmitted via physical line or radio waves to remote locations. Since the amount of information transmitted per unit time is directly proportional to the bandwidth available, then the speed at which a weather chart can be transmitted will vary depending on the quality of the media used for transmission.

Today radiofax data is available via FTP downloads from sites in the Internet such as the ones hosted by the National Oceanic and Atmospheric Administration (NOAA). Radiofax transmissions are also broadcast by NOAA from multiple sites in the country at regular daily schedules. Radio weatherfax transmissions are particularly useful to shipping, where there are limited facilities for accessing the Internet.

The term weatherfax was coined after the technology that allows the transmission and reception of weather charts (surface analysis, forecasts, and others) from a transmission site (usually the meteorological office) to a remote site (where the actual users are).

Newspaper fax

A marine radio fax news from Tokyo Radio JJC Station received using MIXW with a SSB HF communication receiver Radio FAX FURUSATO News.jpg
A marine radio fax news from Tokyo Radio JJC Station received using MIXW with a SSB HF communication receiver

Radiofax may also be used to transmit pages of newspapers. Stations like JJC use this way of transmitting news by using radio facsimile technology. It can be used to transmitted all kinds of such newspaper pages.

Transmission details

Radiofax decoded

Radiofax is transmitted in single sideband which is a refinement of amplitude modulation. The signal shifts up or down a given amount to designate white or black pixels. A deviation less than that for a white or black pixel is taken to be a shade of grey. With correct tuning (1.9 kHz below the assigned frequency for USB, above for LSB), the signal shares some characteristics with SSTV, with black at 1.5 kHz and peak white at 2.3 kHz.

Usually, 120 lines per minute (LPM) are sent (For monochrome fax, possible values are: 60, 90, 100, 120, 180, 240. For colour fax, LPM can be: 120, 240 [7] ). A value known as the index of cooperation (IOC) must also be known to decode a radio fax transmission - this governs the image resolution, and derives from early radio fax machines which used drum readers, and is the product of the total line length and the number of lines per unit length (known sometimes as the factor of cooperation), divided by π. Usually the IOC is 576.

Automatic Picture Transmission format (APT)

APT format permits unattended monitoring of services. It is employed by most terrestrial weather facsimile stations as well as geostationary weather satellites.

SignalDurationIOC576IOC288Remarks
Start tone5s300 Hz675 Hz200 Hz for colour fax modes.
Phasing signal30sBlack line interrupted by a white pulse.
ImageVariable1200 lines600 linesAt 120 lpm.
Stop tone5s450 Hz450 Hz
Black10s

Stations

Today, radiofax is primarily used worldwide for the dissemination of weather charts, satellite weather images, and forecasts to ships at sea. The oceans are covered by coastal stations in various countries.

In the United States, fax weather products are prepared by a number of offices, branches, and agencies within the National Weather Service (NWS) of the National Oceanic and Atmospheric Administration (NOAA).

Tropical and hurricane products come from the Tropical Analysis and Forecast Branch, part of the Tropical Prediction Center/National Hurricane Center. They are broadcast over US Coast Guard communication stations NMG, in New Orleans, LA, and NMC, the Pacific master station on Point Reyes, California. After Hurricane Katrina damaged NMG, the Boston Coast Guard station NMF added a limited schedule of tropical warning charts. NMG is back at full capability, but NMF continues to broadcast these.

All other products come from the Ocean Prediction Center (OPC) of the NWS, in cooperation with several other offices depending on the region and nature of information. These also use NMG, NMC, and NMF, plus Coast Guard station NOJ in Kodiak, Alaska, and Department of Defense station KVM70 in Hawaii.

Ever since the loss of the RMS Titanic highlighted the dangers of icebergs in the North Atlantic, an International Ice Patrol has also originated weather data, and its charts are broadcast by the Boston station during the prime iceberg season of February through September, using the call sign NIK.

CBV, Playa Ancha Radio in Valparaiso, Chile broadcasts a daily schedule of Armada de Chile weather fax for the southeastern Pacific, all the way to the Antarctic. Also in the Pacific, Japan has two stations, as does the Bureau of Meteorology in Australia. Most European countries have stations, as does Russia.

Kyodo News is the only remaining news agency to transmit news via radiofax. It broadcasts complete newspapers in Japanese and English, often at 60 lines per minute instead of the more normal 120 because of the greater complexity of written Japanese. A full day's news takes hours to transmit. Kyodo has a dedicated transmission to Pacific fishing fleets from Kagoshima Prefectural Fishery Radio, and a relay from 9VF/252, which is said to be located in Singapore. These transmitters are considerably more powerful than others used for this mode.

The German Meteorological Service (Deutscher Wetterdienst, DWD) transmits a regular daily schedule of weather charts on three frequencies 3.855 MHz, 7.88 MHz and 13.8825 MHz from their LF and HF transmitting facility in Pinneberg.

History

See also

Related Research Articles

<span class="mw-page-title-main">Fax</span> Method of transmitting images, often of documents

Fax, sometimes called telecopying or telefax, is the telephonic transmission of scanned printed material, normally to a telephone number connected to a printer or other output device. The original document is scanned with a fax machine, which processes the contents as a single fixed graphic image, converting it into a bitmap, and then transmitting it through the telephone system in the form of audio-frequency tones. The receiving fax machine interprets the tones and reconstructs the image, printing a paper copy. Early systems used direct conversions of image darkness to audio tone in a continuous or analog manner. Since the 1980s, most machines transmit an audio-encoded digital representation of the page, using data compression to transmit areas that are all-white or all-black, more quickly.

<span class="mw-page-title-main">Slow-scan television</span> Image transmission over radio

Slow-scan television (SSTV) is a picture transmission method, used mainly by amateur radio operators, to transmit and receive static pictures via radio in monochrome or color.

<span class="mw-page-title-main">Shortwave radio</span> Radio transmissions using wavelengths between 10 m and 100 m

Shortwave radio is radio transmission using radio frequencies in the shortwave bands (SW). There is no official definition of the band range, but it always includes all of the high frequency band (HF), which extends from 3 to 30 MHz ; above the medium frequency band (MF), to the bottom of the VHF band.

<span class="mw-page-title-main">Medium frequency</span> The range 300-3000 kHz of the electromagnetic spectrum

Medium frequency (MF) is the ITU designation for radio frequencies (RF) in the range of 300 kilohertz (kHz) to 3 megahertz (MHz). Part of this band is the medium wave (MW) AM broadcast band. The MF band is also known as the hectometer band as the wavelengths range from ten to one hectometers. Frequencies immediately below MF are denoted as low frequency (LF), while the first band of higher frequencies is known as high frequency (HF). MF is mostly used for AM radio broadcasting, navigational radio beacons, maritime ship-to-shore communication, and transoceanic air traffic control.

Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another in vacuum, or into various parts of the atmosphere. As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering. Understanding the effects of varying conditions on radio propagation has many practical applications, from choosing frequencies for amateur radio communications, international shortwave broadcasters, to designing reliable mobile telephone systems, to radio navigation, to operation of radar systems.

Specific Area Message Encoding (SAME) is a protocol used for framing and classification of broadcasting emergency warning messages. It was developed by the United States National Weather Service for use on its NOAA Weather Radio (NWR) network, and was later adopted by the Federal Communications Commission for the Emergency Alert System, then subsequently by Environment Canada for use on its Weatheradio Canada service. It is also used to set off receivers in Mexico City and surrounding areas as part of the Mexican Seismic Alert System (SASMEX).

<span class="mw-page-title-main">NOAA Weather Radio</span> Weather radio network in the United States

NOAA Weather Radio (NWR), also known as NOAA Weather Radio All Hazards, is an automated 24-hour network of VHF FM weather radio stations in the United States that broadcast weather information directly from a nearby National Weather Service office. The routine programming cycle includes local or regional weather forecasts, synopsis, climate summaries or zone/lake/coastal waters forecasts. During severe conditions the cycle is shortened into: hazardous weather outlooks, short-term forecasts, special weather statements or tropical weather summaries. It occasionally broadcasts other non-weather related events such as national security statements, natural disaster information, environmental and public safety statements, civil emergencies, fires, evacuation orders, and other hazards sourced from the Federal Communications Commission's (FCC) Emergency Alert System. NOAA Weather Radio uses automated broadcast technology that allows for the recycling of segments featured in one broadcast cycle into another and more regular updating of segments to each of the transmitters. It also speeds up the warning transmitting process.

The International Telecommunication Union uses an internationally agreed system for classifying radio frequency signals. Each type of radio emission is classified according to its bandwidth, method of modulation, nature of the modulating signal, and type of information transmitted on the carrier signal. It is based on characteristics of the signal, not on the transmitter used.

<span class="mw-page-title-main">Automatic picture transmission</span>

The Automatic Picture Transmission (APT) system is an analog image transmission system developed for use on weather satellites. It was introduced in the 1960s and over four decades has provided image data to relatively low-cost user stations at locations in most countries of the world. A user station anywhere in the world can receive local data at least twice a day from each satellite as it passes nearly overhead.

<span class="mw-page-title-main">NAVTEX</span> System for remotely transmitting printed notices to ships

NAVTEX, sometimes styled Navtex or NavTex, is an international automated medium frequency direct-printing service for delivery of navigational and meteorological warnings and forecasts, as well as urgent maritime safety information (MSI) to ships.

<span class="mw-page-title-main">Mechanical television</span> Television that relies on a scanning device to display images

Mechanical television or mechanical scan television is an obsolete television system that relies on a mechanical scanning device, such as a rotating disk with holes in it or a rotating mirror drum, to scan the scene and generate the video signal, and a similar mechanical device at the receiver to display the picture. This contrasts with vacuum tube electronic television technology, using electron beam scanning methods, for example in cathode-ray tube (CRT) televisions. Subsequently, modern solid-state liquid-crystal displays (LCD) and LED displays are now used to create and display television pictures.

<span class="mw-page-title-main">Ionosonde</span> Radar for the ionosphere

An ionosonde, or chirpsounder, is a special radar for the examination of the ionosphere. The basic ionosonde technology was invented in 1925 by Gregory Breit and Merle A. Tuve and further developed in the late 1920s by a number of prominent physicists, including Edward Victor Appleton. The term ionosphere and hence, the etymology of its derivatives, was proposed by Robert Watson-Watt.

The term utility station is used to describe fixed radio broadcasters disseminating signals that are not intended for reception by the general public. Utility stations, as the name suggests, do broadcast signals that have an immediate practical use, by means of analog or usually digital modes; most often utility transmissions are of a "point-to-point" nature, intended for a specific receiving station. Utility stations are most prevalent on shortwave frequencies, though they are not restricted to the shortwave frequencies.

NMG is the callsign of the National Hurricane Center's Atlantic basin radiofax radio station. It broadcasts from the United States Coast Guard station in New Orleans, Louisiana with 4 kilowatts of power.

<span class="mw-page-title-main">Weather radio</span> Specialized radio receiver for weather forecasts

A weather radio is a specialized radio receiver that is designed to receive a public broadcast service, typically from government-owned radio stations, dedicated to broadcasting weather forecasts and reports on a continual basis, with the routine weather reports being interrupted by emergency weather reports whenever needed. Weather radios are typically equipped with a standby alerting function—if the radio is muted or tuned to another band and a severe weather bulletin is transmitted, it can automatically sound an alarm and/or switch to a pre-tuned weather channel for emergency weather information. Weather radio services may also occasionally broadcast non-weather-related emergency information, such as in the event of a natural disaster, a child abduction alert, or a terrorist attack.

<span class="mw-page-title-main">Amateur radio repeater</span> Combined receiver and transmitter

An amateur radio repeater is an electronic device that receives a weak or low-level amateur radio signal and retransmits it at a higher level or higher power, so that the signal can cover longer distances without degradation. Many repeaters are located on hilltops or on tall buildings as the higher location increases their coverage area, sometimes referred to as the radio horizon, or "footprint". Amateur radio repeaters are similar in concept to those used by public safety entities, businesses, government, military, and more. Amateur radio repeaters may even use commercially packaged repeater systems that have been adjusted to operate within amateur radio frequency bands, but more often amateur repeaters are assembled from receivers, transmitters, controllers, power supplies, antennas, and other components, from various sources.

<span class="mw-page-title-main">Wirephoto</span> Early method of transmitting photographs over telephone lines

Wirephoto, telephotography or radiophoto is the sending of photographs by telegraph, telephone or radio.

<span class="mw-page-title-main">Arthur Korn</span> German physicist and mathematician (1870–1945)

Arthur Korn was a German physicist, mathematician and inventor. He was involved in the development of the fax machine, specifically the transmission of photographs or telephotography, known as the Bildtelegraph, related to early attempts at developing a practical mechanical television system.

<span class="mw-page-title-main">Giovanni Caselli</span> Italian physicist (1815–1891)

Giovanni Caselli was an Italian priest, inventor, and physicist. He studied electricity and magnetism as a child which led to his invention of the pantelegraph, the forerunner of the fax machine. The world's first practical operating facsimile machine ("fax") system put into use was by Caselli. He had worldwide patents on his system. His technology idea was further developed into today's analog television.

References

  1. WGHF (advertisement), Broadcasting, December 17, 1945, page 83.
  2. Sipley, Louis Walton (1951). A Half Century of Color. Macmillan.
  3. "Paper facsimile radioed" . The New York Times. 13 August 1931. p. 22. Retrieved June 28, 2022 via Times Machine.
  4. 1 2 3 Schneider, John (2011). "The Newspaper of the Air: Early Experiments with Radio Facsimile". theradiohistorian.org. Retrieved May 15, 2017
  5. "Center for American History Spring 2005 Newsletter" (PDF). Archived from the original (PDF) on March 29, 2012. Retrieved May 29, 2012.
  6. G. H. Ridings, A Facsimile transceiver for Pickup and Delivery of Telegrams Archived 2016-02-08 at the Wayback Machine , Western Union Technical Review, Vol. 3, No, 1 Archived 2016-03-10 at the Wayback Machine (January 1949); page 17-26.
  7. Multimode image and data decoding software for soundcards Archived February 3, 2009, at the Wayback Machine
  8. 'Radio printing' sent newspapers through the waves [ permanent dead link ]
  9. First daily newspaper by Radio Facsimile
  10. G. H. Ridings, A Facsimile transceiver for Pickup and Delivery of Telegrams Archived 2016-02-08 at the Wayback Machine , Western Union Technical Review, Vol. 3, No, 1 Archived 2016-03-10 at the Wayback Machine (January 1949); pages 17-26; see page 20.
  11. Daily Express front page Saturday February 5 1966