Winlink

Last updated

Winlink, or formally, Winlink Global Radio Email (registered US Service Mark), also known as the Winlink 2000 Network, is a worldwide radio messaging system that uses amateur-band radio frequencies and government frequencies to provide radio interconnection services that include email with attachments, position reporting, weather bulletins, emergency and relief communications, and message relay. The system is built and administered by volunteers and is financially supported by the Amateur Radio Safety Foundation. [lower-alpha 1]

Contents

Network

Winlink networking started by providing interconnection services for amateur radio (also known as ham radio). It is well known for its central role in emergency and contingency communications worldwide. The system used to employ multiple central message servers around the world for redundancy, but in 2017–2018 upgraded to Amazon Web Services that provides a geographically-redundant cluster of virtual servers with dynamic load balancers and global content-distribution. Gateway stations have operated on sub-bands of HF [lower-alpha 2] since 2013 as the Winlink Hybrid Network, offering message forwarding and delivery through a mesh-like smart network whenever Internet connections are damaged or inoperable. [2] During the late 2000s, it increasingly became what is now the standard network system for radio email, worldwide. Additionally, in response to the need for better disaster response communications in the mid to later part of the 2000s, the network was expanded to provide separate parallel radio email networking systems for the US Department of Homeland Security SHARES Winlink Radio Email System, along with other governments (non-amateur radio) services, also to include Non-government Organizations such as the US American Red Cross, the Austrian International Red Cross, and other such critical infrastructure Non-Government Organizations. Although these services are separate, and for reasons of security may be unknown to each other, the capability to cross services with complete Interoperability is available. For example, a US "Ham" using Winlink on the amateur radio spectrum may email a Winlink user on the DHS SHARES Winlink system (non-amateur) radio service, which may then be picked up on the DHS SHARES Winlink network system. Of course, the originator of any service must be familiar with the regulatory environment of the recipient's service should it be another Winlink service.

Amateur radio HF e-mail

Generally, e-mail communications over amateur radio in the 21st century is now considered normal and commonplace.[ citation needed ] E-mail via high frequency [lower-alpha 2] (HF) can be used nearly everywhere on the planet, and is made possible by connecting an HF single sideband (SSB) transceiver system to a computer, modem interface, and appropriate software. The HF modem technologies include PACTOR, Winmor (deprecated), ARDOP, Vara HF, and Automatic Link Establishment (ALE). VHF/UHF protocols include AX.25 Packet and Vara FM.

Amateur radio HF e-mail guidelines

Amateur radio users in each country follow the appropriate regulatory guidelines for their license. Some countries may limit or regulate types of amateur messaging (such as e-mail) by content, origination location, end destination, or license class of the operator. Origination of third party messages (messages sent on behalf of, or sent to, an end destination who is not an amateur operator) may also be regulated in some countries; those that limit such third party messages normally have exceptions for emergency communications. In accordance with long standing amateur radio tradition, international guidelines and FCC rules section 97.113, hams using the Winlink system are advised that it is not appropriate to use it for business communications.

Users

The Winlink system is open to properly licensed amateur radio operators, worldwide. The system primarily serves radio users without normal access to the internet, government and non-government public service organizations, medical and humanitarian non-profits, and emergency communications organizations. As of July 2008, there were approximately 12,000 radio users and approximately 100,000 internet correspondents. Monthly traffic volume averages over 100,000 messages. [3]

For offshore cruising yachts, Winlink is widely used as an alternative, or alongside, Sailmail, which is an HF PACTOR based-email system using marine HF frequencies rather than amateur, and unlike the amateur radio use of Winlink, allows business to be conducted over radio. In addition to email, Winlink uses a system called "Saildocs," and other file delivery methods, which allows properly licensed amateur radio cruisers to retrieve meteorological, maritime safety and other crucial files over Winlink email. As example, Winlink was found to be more useful in and around South Africa where best weather was provided by SAMNet (South African Mobile Maritime Net). [4] [5] [6]

Supported radio technologies

Technical protocols

PACTOR-I, WINMOR(deprecated), ARDOP, HSMM (WiFi), AX.25 packet, D-Star, TCP/IP, and ALE are non-proprietary protocols used in various RF applications to access the Winlink network systems. Later versions of PACTOR are proprietary and supported only by commercially available modems from Special Communications Systems GmbH. In amateur radio service, AirMail, Winlink Express, and other email client programs used by the Winlink system, [7] disable the proprietary compression technology for PACTOR-II, PACTOR-III, and PACTOR-IV modems and instead relies on the open FBB protocol, also widely used worldwide by packet radio BBS forwarding systems.

Controversies and US regulatory issues

In May 1995, the [[American Radio Relay League]] (ARRL) privately asked the FCC to change Part 97.309(a) to allow fully documented G-TOR, Clover, and original open source PacTOR (Pactor I) modes. The FCC granted this request in DA-95-2106 based on the ARRL's representation that it had worked with developers to ensure complete technical documentation of these codes were available to all amateur radio operators.<ref name = "FCC Order DA 95-2106">{{cite web |title=FCC Order DA 95-2106 |url=https://docs.fcc.gov/public/attachments/DA-95-2106A1.pdf}}</ref> However, subsequent versions of Pactor contained proprietary compression algorithms that prevent over-the-air interception.<ref name="Public Comment by W4RUS">{{cite web |title=Public Comment by W4RUS |url=http://www.fcc.gov/ecfs/filing/1222718116209}}</ref> NOTE: Comment from the Winlink Development Team: July 9, 2024: Winlink only uses an open compressed binary format containing compression, which is publicly listed on the Winlink website (Winlink.org/b2f), and replaces proprietary compression used by some manufacturers of protocols used.

In 2007, a US amateur radio operator filed a formal petition with the [[Federal Communications Commission]] (FCC)<ref name="FCC Petition RM-11392">{{cite web |title=FCC Petition RM-11392 |url=http://apps.fcc.gov/ecfs/document/view?id=6519008574 |format=PDF |publisher=US Government Federal Communications Commission FCC}}</ref> aimed at reducing the signal bandwidth in automatic operation subbands; but, in May&nbsp;2008 FCC ruled against the petition.<ref name="DA-08-1082A1" /> In the Official Order, FCC said, "Additionally, we believe that amending the amateur service rules to limit the ability of amateur stations to experiment with various communications technologies or otherwise impeding their ability to advance the radio art would be inconsistent with the definition and purpose of the amateur service.<ref name="DA-08-1082A1">{{cite web |title=DA-08-1082A1 |url=http://fjallfoss.fcc.gov/edocs_public/attachmatch/DA-08-1082A1.doc |format=DOC |publisher=US Government Federal Communications Commission FCC}}</ref> Moreover, we do not believe that changing the rules to prohibit a communications technology currently in use is in the public interest."<ref name="DA-08-1082A1"/>

In 2013, the FCC ruled in Report and {{nowrap|Order 13-1918}} against the use of encryption in the US amateur radio bands for any purpose, including emergency communications. The FCC cited the need for all amateur radio communications to be open and unobscured, to uphold the Commission's long-standing requirement that the service be able to police itself.<ref name="DA 13-1918">{{cite web |title=DA 13-1918 |url=https://docs.fcc.gov/public/attachments/DA-13-1918A1_Rcd.pdf |publisher= US Government Federal Communications Commission (FCC)}}</ref>

Winlink transmissions on the worldwide amateur radio spectrum do not use any type of encryption. Winlink only uses an open compressed binary format containing compression, which is publicly listed on the Winlink website (Winlink.org/b2f), and replaces proprietary compression used by some manufacturers of protocols used.  Winlink uses point-to-point protocols that may be copied by a third party through methods provided by the authors of these protocols as well as from independent sources. Because the content of data is not obstructed on the amateur spectrum, those government agencies who do use Winlink for Continuity of Government and public safety emergency communications requested (or in some cases, mandated) that they be allowed to encrypt their messages. Although, Winlink does not provide end-to-end message encryption, and leaves the choice to encrypt messages up to the individual agency. However, Winlink does provide the pathway for such encryption on non-amateur radio governments frequencies, worldwide. For the non-amateur radio spectrum, Winlink provides AES-256 transmission encryption for its most used protocols, Pactor and VARA, which is comparable with user supplied message encryption. Such transmission encryption once set up properly, is seamless to the end-user and requires no additional effort.

In addition to "readers" being made available for protocols used by the Winlink system, in the US, all messages passing through licensed US amateur radio stations by radio are freely accessible by other licensed amateurs via the WinLink Open Message Viewer on the Winlink WebSite. Amateurs concerned about encryption are encouraged to help the US amateur radio community police itself by search and viewing such messages, and reporting messages if they spot a violation. https://winlink.org/content/us_amateur_radio_message_viewer.

=Deletion of the antiquated “ Symbol Rate Rule ,” RM-11708 =

This change was requested in 2013 by the National Association for Amateur Radio (ARRL), and the FCC released notice of proposed rulemaking about it in 2016.  In November, 2023, the FCC finally removed the Symbol Rate limit of 300 baud in favor of an occupied bandwidth limit of 2.8 KHz (WT Docket No. 16-239).   As baud rate, the rate at which the carrier waveform amplitude, frequency, and/or phase is varied to transmit information[1]—applicable to data emissions in certain amateur bands.[2]  the FCC stated, "The amateur radio community can and does play a vital role in emergency response communications, but is often unnecessarily hindered by the baud rate limitations in the rules."  Supporting this change were a host of federal, state and local emergency management agencies, who continually wrote ex parte comments to the FCC regarding their concerns with the impact such a limitation had on emergency email communications via Winlink. These agencies wrote for this change, mostly throughout 2022 and 2023. In addition, the American Radio Relay League (ARRL) continued to push its efforts toward this change through Congressional pathways.

Because Winlink is a worldwide service, similar issues are the concern of other countries, who are also pushing for innovative changes that will positively impact their ability to provide a  “no infrastructure” resilient system to bridge SMTP mail over radio, both over the amateur radio spectrum as well as for government service uses as an emergency service option.  


[1] “The symbol rate of a digitally-modulated carrier wave is the rate at which the carrier waveform amplitude, frequency, and/or phase is varied to transmit information.”  Comprehensive Review of Licensing and Operating Rules for Satellite Services, IB Docket No. 12-267, Notice of Proposed Rulemaking, 27 FCC Rcd 11619, 11661, n.177 (2012); see also 47 CFR § 101.3 (defining symbol rate as “[m]odulation rate in bauds,” and noting, “[t]his rate may be higher than the transmitted bit rate as in the case of coded pulses or lower as in the case of multilevel transmission”).

[2]See 47 CFR § 97.305(c).  Bands with a 300 baud rate limitation that we eliminate in this Report and Order are: 160 meter band; 80 meter band; 40 meter band segments 7.000–7.100 MHz and 7.100–7.125 MHz; 30 meter band; 20 meter band segment 14.00–14.15 MHz; 17 meter band segment 18.068–18.110 MHz; 15 meter band segment 21.0–21.2 MHz; 12 meter band segment 24.89–24.93 MHz.  The 10 meter band segment 28.0–28.3 MHz has a 1200 baud rate limitation that was eliminate in this Report and Order.

See also

Footnotes

  1. Amateur Radio Safety Foundation Inc., is an American public-benefit entity and 501(c)(3) non-profit organization. [1]
  2. 1 2 High frequency (HF) is the band of radio frequencies from 3–30 megaHertz, or equivalently wavelengths from 100–10 meters. It is approximately the same as the wider shortwave band.

Related Research Articles

<span class="mw-page-title-main">Packet radio</span> Form of amateur radio data communications using the AX25 protocol

In digital radio, packet radio is the application of packet switching techniques to digital radio communications. Packet radio uses a packet switching protocol as opposed to circuit switching or message switching protocols to transmit digital data via a radio communication link.

<span class="mw-page-title-main">Radioteletype</span> Radio linked electromechanical communications system

Radioteletype (RTTY) is a telecommunications system consisting originally of two or more electromechanical teleprinters in different locations connected by radio rather than a wired link. Radioteletype evolved from earlier landline teleprinter operations that began in the mid-1800s. The US Navy Department successfully tested printing telegraphy between an airplane and ground radio station in 1922. Later that year, the Radio Corporation of America successfully tested printing telegraphy via their Chatham, Massachusetts, radio station to the R.M.S. Majestic. Commercial RTTY systems were in active service between San Francisco and Honolulu as early as April 1932 and between San Francisco and New York City by 1934. The US military used radioteletype in the 1930s and expanded this usage during World War II. From the 1980s, teleprinters were replaced by personal computers (PCs) running software to emulate teleprinters.

Automatic Link Establishment, commonly known as ALE, is the worldwide de facto standard for digitally initiating and sustaining HF radio communications. ALE is a feature in an HF communications radio transceiver system that enables the radio station to make contact, or initiate a circuit, between itself and another HF radio station or network of stations. The purpose is to provide a reliable rapid method of calling and connecting during constantly changing HF ionospheric propagation, reception interference, and shared spectrum use of busy or congested HF channels.

<span class="mw-page-title-main">Very high frequency</span> Electromagnetic wave range of 30-300 MHz

Very high frequency (VHF) is the ITU designation for the range of radio frequency electromagnetic waves from 30 to 300 megahertz (MHz), with corresponding wavelengths of ten meters to one meter. Frequencies immediately below VHF are denoted high frequency (HF), and the next higher frequencies are known as ultra high frequency (UHF).

<span class="mw-page-title-main">Citizens band radio</span> Land mobile radio system

Citizens band radio is a land mobile radio system, a system allowing short-distance one-to-many bidirectional voice communication among individuals, using two-way radios operating near 27 MHz in the high frequency or shortwave band. Citizens band is distinct from other personal radio service allocations such as FRS, GMRS, MURS, UHF CB and the Amateur Radio Service. In many countries, CB operation does not require a license and may be used for business or personal communications.

<span class="mw-page-title-main">High frequency</span> The range 3-30 MHz of the electromagnetic spectrum

High frequency (HF) is the ITU designation for the band of radio waves with frequency between 3 and 30 megahertz (MHz). It is also known as the decameter band or decameter wave as its wavelengths range from one to ten decameters. Frequencies immediately below HF are denoted medium frequency (MF), while the next band of higher frequencies is known as the very high frequency (VHF) band. The HF band is a major part of the shortwave band of frequencies, so communication at these frequencies is often called shortwave radio. Because radio waves in this band can be reflected back to Earth by the ionosphere layer in the atmosphere – a method known as "skip" or "skywave" propagation – these frequencies are suitable for long-distance communication across intercontinental distances and for mountainous terrains which prevent line-of-sight communications. The band is used by international shortwave broadcasting stations (3.95–25.82 MHz), aviation communication, government time stations, weather stations, amateur radio and citizens band services, among other uses.

The American Radio Relay League (ARRL) is the largest membership association of amateur radio enthusiasts in the United States. ARRL is a non-profit organization, and was co-founded on April 6, 1914, by Hiram Percy Maxim and Clarence D. Tuska of Hartford, Connecticut. The ARRL represents the interests of amateur radio operators before federal regulatory bodies, provides technical advice and assistance to amateur radio enthusiasts, supports a number of educational programs and sponsors emergency communications service throughout the country. The ARRL has approximately 161,000 members. In addition to members in the US, the organization claims over 7,000 members in other countries. The ARRL publishes many books and a monthly membership journal called QST.

<span class="mw-page-title-main">Automatic Packet Reporting System</span> Amateur radio telemetry forwarding protocol

Automatic Packet Reporting System (APRS) is an amateur radio-based system for real time digital communications of information of immediate value in the local area. Data can include object Global Positioning System (GPS) coordinates Non-directional beacon, weather station telemetry, text messages, announcements, queries, and other telemetry. APRS data can be displayed on a map, which can show stations, objects, tracks of moving objects, weather stations, search and rescue data, and direction finding data.

The radio spectrum is the part of the electromagnetic spectrum with frequencies from 3 Hz to 3,000 GHz (3 THz). Electromagnetic waves in this frequency range, called radio waves, are widely used in modern technology, particularly in telecommunication. To prevent interference between different users, the generation and transmission of radio waves is strictly regulated by national laws, coordinated by an international body, the International Telecommunication Union (ITU).

<span class="mw-page-title-main">Project 25</span> Set of Telecommunications Standards

Project 25 is a suite of standards for interoperable digital two-way radio products. P25 was developed by public safety professionals in North America and has gained acceptance for public safety, security, public service, and commercial applications worldwide. P25 radios are a direct replacement for analog UHF radios, adding the ability to transfer data as well as voice for more natural implementations of encryption and text messaging. P25 radios are commonly implemented by dispatch organizations, such as police, fire, ambulance and emergency rescue service, using vehicle-mounted radios combined with repeaters and handheld walkie-talkie use.

<span class="mw-page-title-main">6-meter band</span> Amateur radio frequency band

The 6-meter band is the lowest portion of the very high frequency (VHF) radio spectrum internationally allocated to amateur radio use. The term refers to the average signal wavelength of 6 meters.

<span class="mw-page-title-main">Radio-paging code No. 1</span> Communications protocol

Radio-paging code No. 1 is an asynchronous protocol used to transmit data to pagers. Its usual designation is an acronym of the Post Office Code Standardisation Advisory Group, the name of the group that developed the code under the chairmanship of the British Post Office that used to operate most telecommunications in Britain before privatization.

Shortwave bands are frequency allocations for use within the shortwave radio spectrum. Radio waves in these frequency ranges can be used for very long distance (transcontinental) communication because they can reflect off layers of charged particles in the ionosphere and return to Earth beyond the horizon, a mechanism called skywave or “skip” propagation. They are allocated by the ITU for radio services such as maritime communications, international shortwave broadcasting and worldwide amateur radio. The bands are conventionally named by their wavelength in metres, for example the ‘20 meter band’. Radio propagation and possible communication distances vary depending on the time of day, the season and the level of solar activity.

PACTOR is a radio modulation mode used by amateur radio operators, marine radio stations, military or government users such as the US Department of Homeland Security, and radio stations in isolated areas to send and receive digital information via radio.

Amateur radio frequency allocation is done by national telecommunication authorities. Globally, the International Telecommunication Union (ITU) oversees how much radio spectrum is set aside for amateur radio transmissions. Individual amateur stations are free to use any frequency within authorized frequency ranges; authorized bands may vary by the class of the station license.

<span class="mw-page-title-main">High-speed multimedia radio</span>

High-speed multimedia radio (HSMM) is the implementation of high-speed wireless TCP/IP data networks over amateur radio frequency allocations using commercial off-the-shelf (COTS) hardware such as 802.11 Wi-Fi access points. This is possible because the 802.11 unlicensed frequency bands partially overlap with amateur radio bands and ISM bands in many countries. Only licensed amateur radio operators may legally use amplifiers and high-gain antennas within amateur radio frequencies to increase the power and coverage of an 802.11 signal.

<span class="mw-page-title-main">NXDN</span> Radio standard

NXDN stands for Next Generation Digital Narrowband, and is an open standard for public land mobile radio systems; that is, systems of two-way radios (transceivers) for bidirectional person-to-person voice communication. It was developed jointly by Icom Incorporated and Kenwood Corporation as an advanced digital system using FSK modulation that supports encrypted transmission and data as well as voice transmission. Like other land mobile systems, NXDN systems use the VHF and UHF frequency bands. It is also used as a niche mode in amateur radio.

<span class="mw-page-title-main">Amateur radio</span> Use of radio frequency spectra for non-commercial purposes

Amateur radio, also known as ham radio, is the use of the radio frequency spectrum for purposes of non-commercial exchange of messages, wireless experimentation, self-training, private recreation, radiosport, contesting, and emergency communications. The term "amateur" is used to specify "a duly authorized person interested in radioelectric practice with a purely personal aim and without pecuniary interest"; and to differentiate it from commercial broadcasting, public safety, or professional two-way radio services.

Digital mobile radio (DMR) is a digital radio standard for voice and data transmission in non-public radio networks. It was created by the European Telecommunications Standards Institute (ETSI), and is designed to be low-cost and easy to use. DMR, along with P25 phase II and NXDN are the main competitor technologies in achieving 6.25 kHz equivalent bandwidth using the proprietary AMBE+2 vocoder. DMR and P25 II both use two-slot TDMA in a 12.5 kHz channel, while NXDN uses discrete 6.25 kHz channels using frequency division and TETRA uses a four-slot TDMA in a 25 kHz channel.

References

  1. "ARSFI". Amateur Radio Safety Foundation, Inc.
  2. "Navy MARS homepage" (PDF). Navy Military Affiliate Radio System (Navy MARS). Retrieved 4 April 2018.
  3. "Winlink System Traffic". Winlink.org. 21 December 2013.{{cite web}}: |archive-url= requires |archive-date= (help)
  4. Heiney, Paul (2019-09-05). Ocean Sailing: The Offshore Cruising Experience with Real-life Practical Advice. Bloomsbury Publishing. ISBN   978-1-4729-5537-1.
  5. "SMTP test". Inbox lane.
  6. "Temp mail" . Retrieved 7 October 2023.
  7. "Client software". Winlink.org. 21 February 2014.