Faber polynomials

Last updated

In mathematics, the Faber polynomialsPm of a Laurent series

are the polynomials such that

vanishes at z=0. They were introduced by Faber  ( 1903 , 1919 ) and studied by Grunsky  ( 1939 ) and Schur  ( 1945 ).

Related Research Articles

In mathematics, a transcendental number is a real or complex number that is not algebraic – that is, not the root of a non-zero polynomial of finite degree with rational coefficients. The best-known transcendental numbers are π and e. The quality of a number being transcendental is called transcendence.

The modularity theorem states that elliptic curves over the field of rational numbers are related to modular forms in a particular way. Andrew Wiles and Richard Taylor proved the modularity theorem for semistable elliptic curves, which was enough to imply Fermat's Last Theorem. Later, a series of papers by Wiles's former students Brian Conrad, Fred Diamond and Richard Taylor, culminating in a joint paper with Christophe Breuil, extended Wiles's techniques to prove the full modularity theorem in 2001.

In complex analysis, de Branges's theorem, or the Bieberbach conjecture, is a theorem that gives a necessary condition on a holomorphic function in order for it to map the open unit disk of the complex plane injectively to the complex plane. It was posed by Ludwig Bieberbach and finally proven by Louis de Branges.

In mathematics, the uniformization theorem states that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generalization of the Riemann mapping theorem from simply connected open subsets of the plane to arbitrary simply connected Riemann surfaces.

In mathematics, in particular in the theory of modular forms, a Hecke operator, studied by Erich Hecke, is a certain kind of "averaging" operator that plays a significant role in the structure of vector spaces of modular forms and more general automorphic representations.

<span class="mw-page-title-main">Issai Schur</span> German mathematician

Issai Schur was a Russian mathematician who worked in Germany for most of his life. He studied at the University of Berlin. He obtained his doctorate in 1901, became lecturer in 1903 and, after a stay at the University of Bonn, professor in 1919.

In arithmetic geometry, the Weil–Châtelet group or WC-group of an algebraic group such as an abelian variety A defined over a field K is the abelian group of principal homogeneous spaces for A, defined over K. John Tate named it for François Châtelet who introduced it for elliptic curves, and André Weil, who introduced it for more general groups. It plays a basic role in the arithmetic of abelian varieties, in particular for elliptic curves, because of its connection with infinite descent.

In mathematics, a Hilbert modular surface or Hilbert–Blumenthal surface is an algebraic surface obtained by taking a quotient of a product of two copies of the upper half-plane by a Hilbert modular group. More generally, a Hilbert modular variety is an algebraic variety obtained by taking a quotient of a product of multiple copies of the upper half-plane by a Hilbert modular group.

In mathematics, the Schneider–Lang theorem is a refinement by Lang (1966) of a theorem of Schneider (1949) about the transcendence of values of meromorphic functions. The theorem implies both the Hermite–Lindemann and Gelfond–Schneider theorems, and implies the transcendence of some values of elliptic functions and elliptic modular functions.

In mathematical invariant theory, an invariant of a binary form is a polynomial in the coefficients of a binary form in two variables x and y that remains invariant under the special linear group acting on the variables x and y.

In differential geometry, Bernstein's problem is as follows: if the graph of a function on Rn−1 is a minimal surface in Rn, does this imply that the function is linear? This is true for n at most 8, but false for n at least 9. The problem is named for Sergei Natanovich Bernstein who solved the case n = 3 in 1914.

In mathematics, Al-Salam–Carlitz polynomialsU(a)
n
(x;q) and V(a)
n
(x;q) are two families of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Waleed Al-Salam and Leonard Carlitz (1965). Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14.24, 14.25) give a detailed list of their properties.

In mathematics, orthogonal polynomials on the unit circle are families of polynomials that are orthogonal with respect to integration over the unit circle in the complex plane, for some probability measure on the unit circle. They were introduced by Szegő.

In mathematics, the little q-Jacobi polynomialspn(x;a,b;q) are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Hahn (1949). Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

<span class="mw-page-title-main">Helmut Grunsky</span> German mathematician

Helmut Grunsky was a German mathematician who worked in complex analysis and geometric function theory. He introduced Grunsky's theorem and the Grunsky inequalities.

<span class="mw-page-title-main">Grunsky matrix</span> Matrix used in complex analysis

In complex analysis and geometric function theory, the Grunsky matrices, or Grunsky operators, are infinite matrices introduced in 1939 by Helmut Grunsky. The matrices correspond to either a single holomorphic function on the unit disk or a pair of holomorphic functions on the unit disk and its complement. The Grunsky inequalities express boundedness properties of these matrices, which in general are contraction operators or in important special cases unitary operators. As Grunsky showed, these inequalities hold if and only if the holomorphic function is univalent. The inequalities are equivalent to the inequalities of Goluzin, discovered in 1947. Roughly speaking, the Grunsky inequalities give information on the coefficients of the logarithm of a univalent function; later generalizations by Milin, starting from the Lebedev–Milin inequality, succeeded in exponentiating the inequalities to obtain inequalities for the coefficients of the univalent function itself. The Grunsky matrix and its associated inequalities were originally formulated in a more general setting of univalent functions between a region bounded by finitely many sufficiently smooth Jordan curves and its complement: the results of Grunsky, Goluzin and Milin generalize to that case.

In mathematics, the Kervaire semi-characteristic, introduced by Michel Kervaire, is an invariant of closed manifolds M of dimension taking values in , given by

In mathematics, a ternary quartic form is a degree 4 homogeneous polynomial in three variables.

In complex analysis, the Schur class is the set of holomorphic functions defined on the open unit disk and satisfying that solve the Schur problem: Given complex numbers , find a function

In set theory, the Schröder–Bernstein theorem states that, if there exist injective functions f : AB and g : BA between the sets A and B, then there exists a bijective function h : AB.

References