Fanzor

Last updated

The Fanzor (Fz) protein is an eukaryotic, RNA-guided DNA endonuclease, which means it is a type of DNA cutting enzyme that uses RNA to target genes of interest. It has been recently discovered and explored in a number of studies. [1] [2] [3] In bacteria, RNA-guided DNA endonuclease systems, such as the CRISPR/Cas system, serve as an immune system to prevent infection by cutting viral genetic material. [4] Currently, CRISPR/Cas9-mediated's DNA cleavage has extensive application in biological research, and wide-reaching medical potential in human gene editing. [4]

Contents

Fanzor belongs to the OMEGA system. [1] [2] [4] Evolutionarily, it shares a common ancestor, OMEGA TnpB, with the CRISPR/Cas12 system. [1] [5] Due to the shared ancestry between the OMEGA system and the CRISPR system, the protein structure and DNA cleavage function of Fanzor and Cas12 remain largely conserved. [1] [6] Combined with the widespread presence of Fanzor across the diverse genomes of different eukaryotic species, [6] this raises the possibility of OMEGA Fanzor being an alternative to CRISPR/Cas system with better efficiency and compatibility in other complex eukaryotic organisms, such as mammals.

Fanzor functions as a potential human genome editor

Due to its eukaryotic origin, the OMEGA Fanzor system may have some advantages over the better studied CRISPR/Cas gene editor in terms of human genome editing applications. [1] In a CRISPR/Cas9 system, Cas9 proteins are guided by the guide RNA (gRNA) and protospacer adjacent motif (PAM) for DNA cleavage. Interestingly, Fanzor genes in the soil fungus S. punctatus [1] [5] also contain non-coding sequences called ωRNA. Similar to CRISPR/Cas9, Fanzor protein is shown to cleave DNA in test tubes under the guidance of ωRNA and Target-adjacent motif (TAM). [1]

Fanzor Cas9 schematic.png
As shown in the schematic, Cas9 DNA cleavage is instructed by the gRNA and the PAM sequence "NGG" [7] on the target DNA, where N can be any of the four DNA components (A, G, C or T). Similarly, Fanzor DNA cleavage is instructed by the ωRNA and the TAM sequence "CATA" on the target DNA1. Not an accurate representation of size and structure of the RNAs and proteins. (created using Biorender)

In human cells, the Fanzor protein of Spizellomyces punctatus was successfully tested and shown to cleave DNA effectively. [1] However, its efficiency is lower compared to the closely related CRISPR/Cas12a system. [1] By modifying and tweaking the ωRNA and the amino acid sequence, a second version of the S. punctatus Fanzor protein with improved cleavage efficiency - comparable to that of the CRISPR/Cas12a system - was engineered. [1] This shows that, with better modifications and more research, OMEGA Fanzor has the potential to match the CRISPR system in human genome editing in the future.

Clinical and Biotechnological Significance

Studies conclude that Fanzor has great potential for efficient human genome editing [1] [6] with a higher chance of not getting attacked by the immune system. [6] For example, Fanzor could be used in personalized cancer treatments where the patient's own T-cells - important cells of the immune system that recognize and fight foreign pathogens - are edited in order to recognize and destroy cancer cells. [2] [8] In the field of regenerative medicine, it offers hope for an application in stem cell therapy to treat many disease of genetic origin like type 1 diabetes or neurodegenerative diseases. [2]

Furthermore, Fanzor could potentially be used for genome editing in eggs and sperm [2] for disease prevention and infertility treatment. However, the intervention in such cells' DNA comes with risks and requires strict ethical guidelines. [9]

One major advantage of Fanzor in comparison to the CRISPR/Cas9 system is its small size. Therefore, it can be delivered with viral vectors, which are modified dead bodies of viruses engineered to safely deliver genetic material, such as adenoviruses. [4] Adenoviruses are commonly used in medical applications like gene deliveries or vaccines [10] that do not elicit immune responses within the human body. [4]

However, researchers caution that further research is necessary to improve the editing efficiency [1] [6] and precision. [1]

Next to the application in human cells, Fanzor is a prospective tool for specific genome editing in plants, because of the aforementioned advantages of the protein being a small size. [2] Thereby, the nutrient content, the resistance to diseases and the affordability of crops could be improved. [11] Moreover, in regard to the current and arising challenges caused by climate change, crops could be adjusted to better endure stress factors such as drought, salinity and increasing temperatures. [12]


Related Research Articles

A restriction enzyme, restriction endonuclease, REase, ENase orrestrictase is an enzyme that cleaves DNA into fragments at or near specific recognition sites within molecules known as restriction sites. Restriction enzymes are one class of the broader endonuclease group of enzymes. Restriction enzymes are commonly classified into five types, which differ in their structure and whether they cut their DNA substrate at their recognition site, or if the recognition and cleavage sites are separate from one another. To cut DNA, all restriction enzymes make two incisions, once through each sugar-phosphate backbone of the DNA double helix.

Gene knockouts are a widely used genetic engineering technique that involves the targeted removal or inactivation of a specific gene within an organism's genome. This can be done through a variety of methods, including homologous recombination, CRISPR-Cas9, and TALENs.

Gene knockdown is an experimental technique by which the expression of one or more of an organism's genes is reduced. The reduction can occur either through genetic modification or by treatment with a reagent such as a short DNA or RNA oligonucleotide that has a sequence complementary to either gene or an mRNA transcript.

<span class="mw-page-title-main">CRISPR</span> Family of DNA sequence found in prokaryotic organisms

CRISPR is a family of DNA sequences found in the genomes of prokaryotic organisms such as bacteria and archaea. These sequences are derived from DNA fragments of bacteriophages that had previously infected the prokaryote. They are used to detect and destroy DNA from similar bacteriophages during subsequent infections. Hence these sequences play a key role in the antiviral defense system of prokaryotes and provide a form of acquired immunity. CRISPR is found in approximately 50% of sequenced bacterial genomes and nearly 90% of sequenced archaea.

Guide RNA (gRNA) or single guide RNA (sgRNA) is a short sequence of RNA that functions as a guide for the Cas9-endonuclease or other Cas-proteins that cut the double-stranded DNA and thereby can be used for gene editing. In bacteria and archaea, gRNAs are a part of the CRISPR-Cas system that serves as an adaptive immune defense that protects the organism from viruses. Here the short gRNAs serve as detectors of foreign DNA and direct the Cas-enzymes that degrades the foreign nucleic acid.

<i>Fok</i>I Restriction enzyme

The restriction endonuclease Fok1, naturally found in Flavobacterium okeanokoites, is a bacterial type IIS restriction endonuclease consisting of an N-terminal DNA-binding domain and a non sequence-specific DNA cleavage domain at the C-terminal. Once the protein is bound to duplex DNA via its DNA-binding domain at the 5'-GGATG-3' recognition site, the DNA cleavage domain is activated and cleaves the DNA at two locations, regardless of the nucleotide sequence at the cut site. The DNA is cut 9 nucleotides downstream of the motif on the forward strand, and 13 nucleotides downstream of the motif on the reverse strand, producing two sticky ends with 4-bp overhangs.

<span class="mw-page-title-main">Genome editing</span> Type of genetic engineering

Genome editing, or genome engineering, or gene editing, is a type of genetic engineering in which DNA is inserted, deleted, modified or replaced in the genome of a living organism. Unlike early genetic engineering techniques that randomly inserts genetic material into a host genome, genome editing targets the insertions to site-specific locations. The basic mechanism involved in genetic manipulations through programmable nucleases is the recognition of target genomic loci and binding of effector DNA-binding domain (DBD), double-strand breaks (DSBs) in target DNA by the restriction endonucleases, and the repair of DSBs through homology-directed recombination (HDR) or non-homologous end joining (NHEJ).

<span class="mw-page-title-main">Genetic engineering techniques</span> Methods used to change the DNA of organisms

Genetic engineering techniques allow the modification of animal and plant genomes. Techniques have been devised to insert, delete, and modify DNA at multiple levels, ranging from a specific base pair in a specific gene to entire genes. There are a number of steps that are followed before a genetically modified organism (GMO) is created. Genetic engineers must first choose what gene they wish to insert, modify, or delete. The gene must then be isolated and incorporated, along with other genetic elements, into a suitable vector. This vector is then used to insert the gene into the host genome, creating a transgenic or edited organism.

<span class="mw-page-title-main">Cas9</span> Microbial protein found in Streptococcus pyogenes M1 GAS

Cas9 is a 160 kilodalton protein which plays a vital role in the immunological defense of certain bacteria against DNA viruses and plasmids, and is heavily utilized in genetic engineering applications. Its main function is to cut DNA and thereby alter a cell's genome. The CRISPR-Cas9 genome editing technique was a significant contributor to the Nobel Prize in Chemistry in 2020 being awarded to Emmanuelle Charpentier and Jennifer Doudna.

<span class="mw-page-title-main">CRISPR interference</span> Genetic perturbation technique

CRISPR interference (CRISPRi) is a genetic perturbation technique that allows for sequence-specific repression of gene expression in prokaryotic and eukaryotic cells. It was first developed by Stanley Qi and colleagues in the laboratories of Wendell Lim, Adam Arkin, Jonathan Weissman, and Jennifer Doudna. Sequence-specific activation of gene expression refers to CRISPR activation (CRISPRa).

A protospacer adjacent motif (PAM) is a 2–6-base pair DNA sequence immediately following the DNA sequence targeted by the Cas9 nuclease in the CRISPR bacterial adaptive immune system. The PAM is a component of the invading virus or plasmid, but is not found in the bacterial host genome and hence is not a component of the bacterial CRISPR locus. Cas9 will not successfully bind to or cleave the target DNA sequence if it is not followed by the PAM sequence. PAM is an essential targeting component which distinguishes bacterial self from non-self DNA, thereby preventing the CRISPR locus from being targeted and destroyed by the CRISPR-associated nuclease.

<span class="mw-page-title-main">Cas12a</span> DNA-editing technology

Cas12a is a subtype of Cas12 proteins and an RNA-guided endonuclease that forms part of the CRISPR system in some bacteria and archaea. It originates as part of a bacterial immune mechanism, where it serves to destroy the genetic material of viruses and thus protect the cell and colony from viral infection. Cas12a and other CRISPR associated endonucleases use an RNA to target nucleic acid in a specific and programmable matter. In the organisms from which it originates, this guide RNA is a copy of a piece of foreign nucleic acid that previously infected the cell.

No-SCAR genome editing is an editing method that is able to manipulate the Escherichia coli genome. The system relies on recombineering whereby DNA sequences are combined and manipulated through homologous recombination. No-SCAR is able to manipulate the E. coli genome without the use of the chromosomal markers detailed in previous recombineering methods. Instead, the λ-Red recombination system facilitates donor DNA integration while Cas9 cleaves double-stranded DNA to counter-select against wild-type cells. Although λ-Red and Cas9 genome editing are widely used technologies, the no-SCAR method is novel in combining the two functions; this technique is able to establish point mutations, gene deletions, and short sequence insertions in several genomic loci with increased efficiency and time sensitivity.

Perturb-seq refers to a high-throughput method of performing single cell RNA sequencing (scRNA-seq) on pooled genetic perturbation screens. Perturb-seq combines multiplexed CRISPR mediated gene inactivations with single cell RNA sequencing to assess comprehensive gene expression phenotypes for each perturbation. Inferring a gene’s function by applying genetic perturbations to knock down or knock out a gene and studying the resulting phenotype is known as reverse genetics. Perturb-seq is a reverse genetics approach that allows for the investigation of phenotypes at the level of the transcriptome, to elucidate gene functions in many cells, in a massively parallel fashion.

CRISPR-Display (CRISP-Disp) is a modification of the CRISPR/Cas9 system for genome editing. The CRISPR/Cas9 system uses a short guide RNA (sgRNA) sequence to direct a Streptococcus pyogenes Cas9 nuclease, acting as a programmable DNA binding protein, to cleave DNA at a site of interest.

CRISPR activation (CRISPRa) is a type of CRISPR tool that uses modified versions of CRISPR effectors without endonuclease activity, with added transcriptional activators on dCas9 or the guide RNAs (gRNAs).

Off-target genome editing refers to nonspecific and unintended genetic modifications that can arise through the use of engineered nuclease technologies such as: clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9, transcription activator-like effector nucleases (TALEN), meganucleases, and zinc finger nucleases (ZFN). These tools use different mechanisms to bind a predetermined sequence of DNA (“target”), which they cleave, creating a double-stranded chromosomal break (DSB) that summons the cell's DNA repair mechanisms and leads to site-specific modifications. If these complexes do not bind at the target, often a result of homologous sequences and/or mismatch tolerance, they will cleave off-target DSB and cause non-specific genetic modifications. Specifically, off-target effects consist of unintended point mutations, deletions, insertions inversions, and translocations.

<span class="mw-page-title-main">CRISPR gene editing</span> Gene editing method

CRISPR gene editing standing for "Clustered Regularly Interspaced Short Palindromic Repeats" is a genetic engineering technique in molecular biology by which the genomes of living organisms may be modified. It is based on a simplified version of the bacterial CRISPR-Cas9 antiviral defense system. By delivering the Cas9 nuclease complexed with a synthetic guide RNA (gRNA) into a cell, the cell's genome can be cut at a desired location, allowing existing genes to be removed and/or new ones added in vivo.

Prime editing is a 'search-and-replace' genome editing technology in molecular biology by which the genome of living organisms may be modified. The technology directly writes new genetic information into a targeted DNA site. It uses a fusion protein, consisting of a catalytically impaired Cas9 endonuclease fused to an engineered reverse transcriptase enzyme, and a prime editing guide RNA (pegRNA), capable of identifying the target site and providing the new genetic information to replace the target DNA nucleotides. It mediates targeted insertions, deletions, and base-to-base conversions without the need for double strand breaks (DSBs) or donor DNA templates.

<span class="mw-page-title-main">Genome-wide CRISPR-Cas9 knockout screens</span> Research tool in genomics

Genome-wide CRISPR-Cas9 knockout screens aim to elucidate the relationship between genotype and phenotype by ablating gene expression on a genome-wide scale and studying the resulting phenotypic alterations. The approach utilises the CRISPR-Cas9 gene editing system, coupled with libraries of single guide RNAs (sgRNAs), which are designed to target every gene in the genome. Over recent years, the genome-wide CRISPR screen has emerged as a powerful tool for performing large-scale loss-of-function screens, with low noise, high knockout efficiency and minimal off-target effects.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 Saito, Makoto; Xu, Peiyu; Faure, Guilhem; Maguire, Samantha; Kannan, Soumya; Altae-Tran, Han; Vo, Sam; Desimone, AnAn; Macrae, Rhiannon K.; Zhang, Feng (2023-08-01). "Fanzor is a eukaryotic programmable RNA-guided endonuclease". Nature. 620 (7974): 660–668. Bibcode:2023Natur.620..660S. doi:10.1038/s41586-023-06356-2. ISSN   1476-4687. PMC   10432273 . PMID   37380027.
  2. 1 2 3 4 5 6 Awan, Muhammad Jawad Akbar; Awan, Muhammad Raza Ali; Amin, Imran; Mansoor, Shahid (2023). "Fanzor: a compact programmable RNA-guided endonuclease from eukaryotes". Trends in Biotechnology. 41 (11): 1332–1334. doi:10.1016/j.tibtech.2023.08.003. ISSN   0167-7799. PMID   37673694. S2CID   261536553.
  3. Bao, Weidong; Jurka, Jerzy (2013-04-01). "Homologues of bacterial TnpB_IS605 are widespread in diverse eukaryotic transposable elements". Mobile DNA. 4 (1): 12. doi: 10.1186/1759-8753-4-12 . ISSN   1759-8753. PMC   3627910 . PMID   23548000.
  4. 1 2 3 4 5 Badon, Isabel Wen; Oh, Yeounsun; Kim, Ho-Joong; Lee, Seung Hwan (2023). "Recent application of CRISPR-Cas12 and OMEGA system for genome editing". Molecular Therapy. 32 (1): 32–43. doi: 10.1016/j.ymthe.2023.11.013 . ISSN   1525-0016. PMC  10787141. PMID   37952084.
  5. 1 2 Yang, Hui; Patel, Dinshaw J. (2023-11-06). "Fanzors: Striking expansion of RNA-guided endonucleases to eukaryotes". Cell Research. 34 (2): 99–100. doi: 10.1038/s41422-023-00894-0 . ISSN   1748-7838. PMC  10837191. PMID   37932446. S2CID   265041856.
  6. 1 2 3 4 5 Jiang, Kaiyi; Lim, Justin; Sgrizzi, Samantha; Trinh, Michael; Kayabolen, Alisan; Yutin, Natalya; Bao, Weidong; Kato, Kazuki; Koonin, Eugene V.; Gootenberg, Jonathan S.; Abudayyeh, Omar O. (2023). "Programmable RNA-guided DNA endonucleases are widespread in eukaryotes and their viruses". Science Advances. 9 (39): –0171. Bibcode:2023SciA....9K.171J. doi:10.1126/sciadv.adk0171. PMC   10530073 . PMID   37756409.
  7. Anders, Carolin; Niewoehner, Ole; Duerst, Alessia; Jinek, Martin (September 2014). "Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease". Nature. 513 (7519): 569–573. Bibcode:2014Natur.513..569A. doi:10.1038/nature13579. PMC   4176945 . PMID   25079318.
  8. Dimitri, Alexander; Herbst, Friederike; Fraietta, Joseph A. (18 March 2022). "Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing". Molecular Cancer. 21 (1): 78. doi: 10.1186/s12943-022-01559-z . PMC   8932053 . PMID   35303871.
  9. Rubeis, Giovanni; Steger, Florian (2018-07-01). "Risks and benefits of human germline genome editing: An ethical analysis". Asian Bioethics Review. 10 (2): 133–141. doi:10.1007/s41649-018-0056-x. ISSN   1793-9453. PMC   7747319 . PMID   33717282.
  10. Lee, Cody S.; Bishop, Elliot S.; Zhang, Ruyi; Yu, Xinyi; Farina, Evan M.; Yan, Shujuan; Zhao, Chen; Zeng, Zongyue; Shu, Yi; Wu, Xingye; Lei, Jiayan; Li, Yasha; Zhang, Wenwen; Yang, Chao; Wu, Ke; Wu, Ying; Ho, Sherwin; Athiviraham, Aravind; Lee, Michael J.; Wolf, Jennifer Moriatis; Reid, Russell R.; He, Tong-Chuan (2017). "Adenovirus-mediated gene delivery: Potential applications for gene and cell-based therapies in the new era of personalized medicine". Genes & Diseases. 4 (2): 43–63. doi: 10.1016/j.gendis.2017.04.001 . ISSN   2352-3042. PMC   5609467 . PMID   28944281. S2CID   34626858.
  11. Pixley, Kevin V.; Falck-Zepeda, Jose B.; Paarlberg, Robert L.; Phillips, Peter W. B.; Slamet-Loedin, Inez H.; Dhugga, Kanwarpal S.; Campos, Hugo; Gutterson, Neal (April 2022). "Genome-edited crops for improved food security of smallholder farmers". Nature Genetics. 54 (4): 364–367. doi: 10.1038/s41588-022-01046-7 . PMID   35393597. S2CID   248025116.
  12. Karavolias, Nicholas G.; Horner, Wilson; Abugu, Modesta N.; Evanega, Sarah N. (7 September 2021). "Application of Gene Editing for Climate Change in Agriculture". Frontiers in Sustainable Food Systems. 5. doi: 10.3389/fsufs.2021.685801 .