Faraday-efficiency effect

Last updated

The Faraday-efficiency effect refers to the potential for misinterpretation of data from experiments in electrochemistry through failure to take into account a Faraday efficiency of less than 100 percent.

Contents

Assumption about efficiency

Until recent decades it was common to assume that the release of hydrogen and oxygen gas during electrolysis of water always has a Faraday efficiency of 100%. Pons and Fleischmann, and other investigators who reported the finding of anomalous excess heat in electrolytic cells, [1] all relied on this popular assumption. No one bothered to measure the Faraday efficiency in their cells during the experiments.[ dubious discuss ] Many publications reporting the finding of excess heat included an explicit statement like: "The Faraday efficiency is assumed to be unity." Even if not explicitly stated so, these publications included this implicit assumption in the formulas used to calculate the cells' energy balance.

Relevance to cold fusion

Lacking any other plausible explanation, the anomalous excess heat produced during such electrolysis was attributed by Pons and Fleischmann to cold fusion. Later, it was discovered that such excess heat can easily be the product of conventional chemistry, i.e. internal recombination of hydrogen and oxygen. Such recombination leads to a reduction in the Faraday efficiency of the electrolysis. The Faraday-efficiency effect is the observation of anomalous excess heat due to a reduction in the Faraday efficiency.[ citation needed ]

Measurement

From 1991-1993 a group of investigators, [2] [3] headed by Zvi Shkedi, in the state of Massachusetts, USA, built well-insulated cells and calorimeters which included the capability to measure the actual Faraday efficiency in real-time during the experiments. The cells were of the light-water type; with a fine-wire nickel cathode; a platinum anode; and K2CO3 electrolyte.

The calorimeters were calibrated to an accuracy of 0.02% of input power. The long-term stability of the calorimeters was verified over a period of 9 months of continuous operation. In their publication, the investigators show details of their calorimeters' design and teach the technology of achieving high calorimetric accuracy.

Experiments

A total of 64 experiments were performed in which the actual Faraday efficiency was measured. The results were analyzed twice; once with the popular assumption that the Faraday efficiency is 100%, and, again, taking into account the measured Faraday efficiency in each experiment. The average Faraday efficiency measured in these experiments was 78%.

First analysis

The first analysis, assuming a Faraday efficiency of 100%, yielded an average apparent excess heat of 21% of input power. The term "apparent excess heat" was coined by the investigators to indicate that the actual Faraday efficiency was ignored in the analysis.

Second analysis

The second analysis, taking into account the measured Faraday efficiency, yielded an actual excess heat of 0.13% +/- 0.48%. In other words, when the actual Faraday efficiency was measured and taken into account, the energy balance of the cells was zero, with no excess heat.

Conclusion

This investigation has shown how conventional chemistry, i.e. internal recombination of hydrogen and oxygen, accounted for the entire amount of apparent excess heat. The investigators concluded their publication [2] with the following word of advice:

"All reports claiming the observation of excess heat should be accompanied by simultaneous measurements of the actual Faraday efficiency."

Jones et al. [4] have confirmed the Shkedi et al. findings with the same conclusion:

"Faradaic efficiencies less than 100% during electrolysis of water can account for reports of excess heat in 'cold fusion' cells." [2]

Related Research Articles

<span class="mw-page-title-main">Cold fusion</span> Hypothetical type of nuclear reaction

Cold fusion is a hypothesized type of nuclear reaction that would occur at, or near, room temperature. It would contrast starkly with the "hot" fusion that is known to take place naturally within stars and artificially in hydrogen bombs and prototype fusion reactors under immense pressure and at temperatures of millions of degrees, and be distinguished from muon-catalyzed fusion. There is currently no accepted theoretical model that would allow cold fusion to occur.

<span class="mw-page-title-main">Electrochemistry</span> Branch of chemistry

Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically conducting phase between electrodes separated by an ionically conducting and electronically insulating electrolyte.

<span class="mw-page-title-main">Electrochemical cell</span> Electro-chemical device

An electrochemical cell is a device that generates electrical energy from chemical reactions. Electrical energy can also be applied to these cells to cause chemical reactions to occur. Electrochemical cells that generate an electric current are called voltaic or galvanic cells and those that generate chemical reactions, via electrolysis for example, are called electrolytic cells.

<span class="mw-page-title-main">Fuel cell</span> Device that converts the chemical energy from a fuel into electricity

A fuel cell is an electrochemical cell that converts the chemical energy of a fuel and an oxidizing agent into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requiring a continuous source of fuel and oxygen to sustain the chemical reaction, whereas in a battery the chemical energy usually comes from substances that are already present in the battery. Fuel cells can produce electricity continuously for as long as fuel and oxygen are supplied.

<span class="mw-page-title-main">Electrolysis</span> Technique in chemistry and manufacturing

In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean "breakdown via electricity."

<span class="mw-page-title-main">Calorimeter</span> Instrument for measuring heat

A calorimeter is a device used for calorimetry, or the process of measuring the heat of chemical reactions or physical changes as well as heat capacity. Differential scanning calorimeters, isothermal micro calorimeters, titration calorimeters and accelerated rate calorimeters are among the most common types. A simple calorimeter just consists of a thermometer attached to a metal container full of water suspended above a combustion chamber. It is one of the measurement devices used in the study of thermodynamics, chemistry, and biochemistry.

<span class="mw-page-title-main">Electrolytic cell</span> Cell that uses electrical energy to drive a non-spontaneous redox reaction

An electrolytic cell is an electrochemical cell that utilizes an external source of electrical energy to force a chemical reaction that would otherwise not occur. The external energy source is a voltage applied between the cell's two electrodes; an anode and a cathode, which are immersed in an electrolyte solution. This is in contrast to a galvanic cell, which itself is a source of electrical energy and the foundation of a battery. The net reaction taking place in a galvanic cell is a spontaneous reaction, i.e., the Gibbs free energy remains -ve, while the net reaction taking place in an electrolytic cell is the reverse of this spontaneous reaction, i.e., the Gibbs free energy is +ve.

A regenerative fuel cell or reverse fuel cell (RFC) is a fuel cell run in reverse mode, which consumes electricity and chemical B to produce chemical A. By definition, the process of any fuel cell could be reversed. However, a given device is usually optimized for operating in one mode and may not be built in such a way that it can be operated backwards. Standard fuel cells operated backwards generally do not make very efficient systems unless they are purpose-built to do so as with high-pressure electrolysers, regenerative fuel cells, solid-oxide electrolyser cells and unitized regenerative fuel cells.

<span class="mw-page-title-main">High-temperature electrolysis</span> Technique for producing hydrogen from water

High-temperature electrolysis is a technology for producing hydrogen from water at high temperatures or other products, such as iron or carbon nanomaterials, as higher energy lowers needed electricity to split molecules and opens up new, potentially better electrolytes like molten salts or hydroxides. Unlike electrolysis at room temperature, HTE operates at elevated temperature ranges depending on the thermal capacity of the material. Because of the detrimental effects of burning fossil fuels on humans and the environment, HTE has become a necessary alternative and efficient method by which hydrogen can be prepared on a large scale and used as fuel. The vision of HTE is to move towards decarbonization in all economic sectors. The material requirements for this process are: the heat source, the electrodes, the electrolyte, the electrolyzer membrane, and the source of electricity.

The heating value of a substance, usually a fuel or food, is the amount of heat released during the combustion of a specified amount of it.

<span class="mw-page-title-main">Electrolysis of water</span> Electricity-induced chemical reaction

Electrolysis of water is using electricity to split water into oxygen and hydrogen gas by electrolysis. Hydrogen gas released in this way can be used as hydrogen fuel, but must be kept apart from the oxygen as the mixture would be extremely explosive. Separately pressurised into convenient 'tanks' or 'gas bottles', hydrogen can be used for oxyhydrogen welding and other applications, as the hydrogen / oxygen flame can reach approximately 2,800°C.

In electrochemistry, overpotential is the potential difference (voltage) between a half-reaction's thermodynamically determined reduction potential and the potential at which the redox event is experimentally observed. The term is directly related to a cell's voltage efficiency. In an electrolytic cell the existence of overpotential implies that the cell requires more energy than thermodynamically expected to drive a reaction. In a galvanic cell the existence of overpotential means less energy is recovered than thermodynamics predicts. In each case the extra/missing energy is lost as heat. The quantity of overpotential is specific to each cell design and varies across cells and operational conditions, even for the same reaction. Overpotential is experimentally determined by measuring the potential at which a given current density is achieved.

<span class="mw-page-title-main">Voltameter</span> Instrument for measuring electric charge

A voltameter or coulometer is a scientific instrument used for measuring electric charge through electrolytic action. The SI unit of electric charge is the coulomb.

In electrochemistry, Faraday efficiency describes the efficiency with which charge (electrons) is transferred in a system facilitating an electrochemical reaction. The word "Faraday" in this term has two interrelated aspects: first, the historic unit for charge is the faraday (F), but has since been replaced by the coulomb (C); and secondly, the related Faraday's constant correlates charge with moles of matter and electrons. This phenomenon was originally understood through Michael Faraday's work and expressed in his laws of electrolysis.

<span class="mw-page-title-main">Timeline of hydrogen technologies</span>

This is a timeline of the history of hydrogen technology.

Bulk electrolysis is also known as potentiostatic coulometry or controlled potential coulometry. The experiment is a form of coulometry which generally employs a three electrode system controlled by a potentiostat. In the experiment the working electrode is held at a constant potential (volts) and current (amps) is monitored over time (seconds). In a properly run experiment an analyte is quantitatively converted from its original oxidation state to a new oxidation state, either reduced or oxidized. As the substrate is consumed, the current also decreases, approaching zero when the conversion nears completion.

<span class="mw-page-title-main">Solid oxide electrolyzer cell</span> Type of fuel cell

A solid oxide electrolyzer cell (SOEC) is a solid oxide fuel cell that runs in regenerative mode to achieve the electrolysis of water by using a solid oxide, or ceramic, electrolyte to produce hydrogen gas and oxygen. The production of pure hydrogen is compelling because it is a clean fuel that can be stored, making it a potential alternative to batteries, methane, and other energy sources. Electrolysis is currently the most promising method of hydrogen production from water due to high efficiency of conversion and relatively low required energy input when compared to thermochemical and photocatalytic methods.

<span class="mw-page-title-main">Proton exchange membrane electrolysis</span> Technology for splitting water molecules

Proton exchange membrane(PEM) electrolysis is the electrolysis of water in a cell equipped with a solid polymer electrolyte (SPE) that is responsible for the conduction of protons, separation of product gases, and electrical insulation of the electrodes. The PEM electrolyzer was introduced to overcome the issues of partial load, low current density, and low pressure operation currently plaguing the alkaline electrolyzer. It involves a proton-exchange membrane.

<span class="mw-page-title-main">Pulse electrolysis</span> Pulse Electrolysis

Pulse electrolysis is an alternate electrolysis method that utilises a pulsed direct current to initiate non-spontaneous chemical reactions. Also known as pulsed direct current (PDC) electrolysis, the increased number of variables that it introduces to the electrolysis method can change the application of the current to the electrodes and the resulting outcome. This varies from direct current (DC) electrolysis, which only allows the variation of one value, the voltage applied. By utilising conventional pulse width modulation (PMW), multiple dependent variables can be altered, including the type of waveform, typically a rectangular pulse wave, the duty cycle, and the frequency. Currently, there has been a focus on theoretical and experimental research into PDC electrolysis in terms of the electrolysis of water to produce hydrogen. Claims have been made that there is a possibility it can result in a higher electrical efficiency in comparison to DC water electrolysis, but past research has shown this is not the case. The varying voltage and current added on top of the DC cause additional energy consumption with no effect on the hydrogen production. Because of the increasing energy consumption, attempts to replicate claimed benefits experimentally have not succeeded, and have found negative effects on the electrolyser longevity instead.

<span class="mw-page-title-main">Reversible solid oxide cell</span>

A reversible solid oxide cell (rSOC) is a solid-state electrochemical device that is operated alternatively as a solid oxide fuel cell (SOFC) and a solid oxide electrolysis cell (SOEC). Similarly to SOFCs, rSOCs are made of a dense electrolyte sandwiched between two porous electrodes. Their operating temperature ranges from 600°C to 900°C, hence they benefit from enhanced kinetics of the reactions and increased efficiency with respect to low-temperature electrochemical technologies.

References

  1. "Archived copy". Archived from the original on 2008-02-23. Retrieved 2008-02-15.{{cite web}}: CS1 maint: archived copy as title (link)
  2. 1 2 3 Calorimetry, Excess Heat, and Faraday Efficiency in Ni-H2O Electrolytic Cells. Z. Shkedi, R.C. McDonald, J.J. Breen, S.J. Maguire, and J. Veranth, Fusion Technology Vol.28 No.4 (1995) p.1720-1731
  3. Response to "Comments on 'Calorimetry, Excess Heat, and Faraday Efficiency in Ni-H2O Electrolytic Cells' ". Shkedi Z., Fusion Technology Vol.30 (1996) p.133
  4. Faradaic efficiencies less than 100% during electrolysis of water can account for reports of excess heat in 'cold fusion' cells. J.E. Jones et al., J. Physical Chem. 99 (May 1995) p.6973-6979