Ferrofluid mirror

Last updated

A ferrofluid mirror is a type of deformable mirror with a reflective liquid surface, commonly used in adaptive optics. It is made of ferrofluid and magnetic iron particles in ethylene glycol, the basis of automotive antifreeze. [1] The ferrofluid mirror changes shape instantly when a magnetic field is applied. As the ferromagnetic particles align with the magnetic field, the liquid becomes magnetized and its surface acquires a shape governed by the equilibrium between the magnetic, gravitational and surface tension forces. [2] Since any shapes can be produced by changing the magnetic field geometries, wavefront control and correction can be achieved.

Contents

Ferrofluid deformable mirror Ferrofluid Deformable mirror.JPG
Ferrofluid deformable mirror

A ferrofluid mirror is controlled by a number of actuators, often arranged in a hexagonal array. [3] [4] Pure ferrofluids have low reflectivity, so they must be coated with a reflective layer. Water-based ferrofluids hold the reflective layer effectively, but water evaporates so quickly that the mirror could disappear within hours. Depositing a thin silver colloid known as a metal liquid-like film (MELLF) on the ferrofluid surface solves the problem of fast evaporation and low reflectivity of pure ferrofluids. [5] The combination of fluid and metal results in a liquid optical surface that can be precisely shaped in a magnetic field.

Applications

Astronomy

Ferrofluid mirror telescopes have been built to obtain astronomical data and used to take images of deep space; subjects for research include exoplanets. The main challenge astronomers and scientists face is image distortions due to wavefront errors caused by the atmosphere. The solution to this problem is to create mirrors with controllable surface shapes, known as deformable mirrors. [6] Ferrofluid mirrors are used as deformable mirrors because when ferrofluids are exposed to a magnetic field, the liquid forms a shape to minimize the energy of the system which involves magnetic, gravitational, and surface tension forces of the liquid. [2]

Ophthalmology

While ferrofluid mirrors are widely used in telescopes, ferrofluid mirrors can also be applied in the field of visual science. Human eyes suffers from many optical imperfections. Ophthalmologists look into the eyes to detect and diagnose diseases by examining the retina. Ferrofluid mirrors could be rapidly adjusted to compensate for the large distortions in diseased eyes during eye exams or treatments. [7] They can generate surfaces having complex shapes thus can be used to determine the shape of the lens of the human eyes, the crystalline lens. This allows the measurement of high-order aberrations of the crystalline lens so that they can be corrected with the appropriate medical procedures. The magnetically shaped reference surface can further be used to verify the correction made to the lens of the eye before, during or after the procedures. [8]

Developments

Deformable solid mirror

Before ferrofluid mirrors were invented, solid deformable mirrors were used to correct atmospheric distortion and keep a steady focus. Deformable solid mirrors use flexible mirrors with complex actuators underneath to correct for atmospheric distortion and keep a steady focus. [9] Shortcomings of traditional deformable solid mirrors include cost, fragility, and the need for continuous power. Images from these mirrors have an undesirable quilt pattern due to the discrete actuators beneath the mirror surface. [6]

Mercury mirror

Mercury was used as the main material of early deformable liquid-mirror telescopes because of its high reflectivity and low melting temperature. However, as a magnetic liquid, it had problems. It is difficult to obtain a stable metallic based magnetic liquid, and the high density of mercury necessitates a larger deforming force and thus a strong magnetic field. [5]

Ferrofluid mirror

The limitations associated with the use of mercury for deformable liquid mirrors can be solved through the use of ferrofluids. Ferrofluid mirrors use cheaper materials, and are able to make more corrections due to its larger range of motion. Stable ferrofluids have wide ranges of physical properties thus can be produced to suit many practical application needs. [9]

Related Research Articles

Optics Branch of physics that studies light

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

Active optics

Active optics is a technology used with reflecting telescopes developed in the 1980s, which actively shapes a telescope's mirrors to prevent deformation due to external influences such as wind, temperature, mechanical stress. Without active optics, the construction of 8 metre class telescopes is not possible, nor would telescopes with segmented mirrors be feasible.

Adaptive optics

Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of incoming wavefront distortions by deforming a mirror in order to compensate for the distortion. It is used in astronomical telescopes and laser communication systems to remove the effects of atmospheric distortion, in microscopy, optical fabrication and in retinal imaging systems to reduce optical aberrations. Adaptive optics works by measuring the distortions in a wavefront and compensating for them with a device that corrects those errors such as a deformable mirror or a liquid crystal array.

Reflecting telescope

A reflecting telescope is a telescope that uses a single or a combination of curved mirrors that reflect light and form an image. The reflecting telescope was invented in the 17th century, by Isaac Newton, as an alternative to the refracting telescope which, at that time, was a design that suffered from severe chromatic aberration. Although reflecting telescopes produce other types of optical aberrations, it is a design that allows for very large diameter objectives. Almost all of the major telescopes used in astronomy research are reflectors. Reflecting telescopes come in many design variations and may employ extra optical elements to improve image quality or place the image in a mechanically advantageous position. Since reflecting telescopes use mirrors, the design is sometimes referred to as a "catoptric" telescope.

Rotating furnace

A rotating furnace is a device for making solid objects which have concave surfaces that are segments of axially symmetrical paraboloids. Usually, the objects are made of glass. The furnace makes use of the fact, which was known already to Newton, that the centrifugal-force-induced shape of the top surface of a spinning liquid is a concave paraboloid, identical to the shape of a reflecting telescope's primary focusing mirror.

Newtonian telescope

The Newtonian telescope, also called the Newtonian reflector or just the Newtonian, is a type of reflecting telescope invented by the English scientist Sir Isaac Newton (1642–1727), using a concave primary mirror and a flat diagonal secondary mirror. Newton's first reflecting telescope was completed in 1668 and is the earliest known functional reflecting telescope. The Newtonian telescope's simple design has made it very popular with amateur telescope makers.

Ferrofluid

Ferrofluid is a liquid that is attracted to the poles of a magnet. They are colloidal liquids made of nanoscale ferromagnetic, or ferrimagnetic, particles suspended in a carrier fluid. Each magnetic particle is thoroughly coated with a surfactant to inhibit clumping. Large ferromagnetic particles can be ripped out of the homogeneous colloidal mixture, forming a separate clump of magnetic dust when exposed to strong magnetic fields. The magnetic attraction of tiny nanoparticles is weak enough that the surfactant's Van der Waals force is sufficient to prevent magnetic clumping or agglomeration. Ferrofluids usually do not retain magnetization in the absence of an externally applied field and thus are often classified as "superparamagnets" rather than ferromagnets.

Giant Magellan Telescope

The Giant Magellan Telescope (GMT) is a ground-based extremely large telescope under construction. It will consist of seven 8.4 m (27.6 ft) diameter primary segments, that will observe optical and near infrared (320–25000 nm) light, with the resolving power of a 24.5 m (80.4 ft) primary mirror and collecting area equivalent to a 22.0 m (72.2 ft) one, which is about 368 square meters. The telescope is expected to have a resolving power 10 times greater than the Hubble Space Telescope. As of November 2017, five mirrors had been cast and the construction of the summit facility has begun.

Wavefront Locus of points at equal phase in a wave

In physics the wavefront of a time-varying field is the set (locus) of all points where the wave has the same phase of the sinusoid. The term is generally meaningful only for fields that, at each point, vary sinusoidally in time with a single temporal frequency.

Catadioptric system Optical system where refraction and reflection are combined

A catadioptric optical system is one where refraction and reflection are combined in an optical system, usually via lenses (dioptrics) and curved mirrors (catoptrics). Catadioptric combinations are used in focusing systems such as searchlights, headlamps, early lighthouse focusing systems, optical telescopes, microscopes, and telephoto lenses. Other optical systems that use lenses and mirrors are also referred to as "catadioptric", such as surveillance catadioptric sensors.

Aspheric lens

An aspheric lens or asphere is a lens whose surface profiles are not portions of a sphere or cylinder. In photography, a lens assembly that includes an aspheric element is often called an aspherical lens.

Liquid-mirror telescope

Liquid-mirror telescopes are telescopes with mirrors made with a reflective liquid. The most common liquid used is mercury, but other liquids will work as well. The liquid and its container are rotated at a constant speed around a vertical axis, which causes the surface of the liquid to assume a paraboloidal shape. This parabolic reflector can serve as the primary mirror of a reflecting telescope. The rotating liquid assumes the same surface shape regardless of the container's shape; to reduce the amount of liquid metal needed, and thus weight, a rotating mercury mirror uses a container that is as close to the necessary parabolic shape as possible. Liquid mirrors can be a low-cost alternative to conventional large telescopes. Compared to a solid glass mirror that must be cast, ground, and polished, a rotating liquid-metal mirror is much less expensive to manufacture.

Deformable mirror

Deformable mirrors (DM) are mirrors whose surface can be deformed, in order to achieve wavefront control and correction of optical aberrations. Deformable mirrors are used in combination with wavefront sensors and real-time control systems in adaptive optics. In 2006 they found a new use in femtosecond pulse shaping.

A space telescope mirror is a concept for a type of reflecting space telescope that uses a reflecting liquid such as mercury as its primary reflector.

Boston Micromachines Corporation is a US company operating out of Cambridge, Massachusetts. Boston Micromachines manufactures and develops instruments based on MEMS technology to perform open and closed-loop adaptive optics. The technology is applied in astronomy, beam shaping, vision science, retinal imaging, microscopy, laser communications, and national defense. The instruments developed at Boston Micromachines include deformable mirrors, optical modulators, and retinal imaging systems, all of which utilize adaptive optics technology to enable wavefront manipulation capabilities which enhance the quality of the final image.

ALPAO is a company which manufactures a range of adaptive optics products for use in research and industry, including deformable mirrors with large strokes, wavefront sensors, and adaptive optics loops. These products are designed for astronomy, vision science, microscopy, wireless optical communications, and laser applications.

GREGOR Solar Telescope Solar telescope in the Canary Islands

GREGOR is a solar telescope, equipped with a 1.5 m primary mirror. located at the Teide Observatory on Tenerife in the Canary Islands. It replaces the older Gregory Coudé Telescope and was inaugurated on May 21, 2012. First light, using a 1 metre test mirror, was on March 12, 2009.

Iris AO, Inc. manufactures small-scale, microelectromechanical systems (MEMS)-based deformable mirrors (DM) and adaptive optics systems that offer radical advantages in cost, size, durability, flexibility, and power consumption. Iris AO systems make adaptive optics (AO) practical for a host of new applications, including astronomy, retinal and biomedical imaging, beam shaping, portable laser communications, and horizontal-path imaging.

Goode Solar Telescope

The Goode Solar Telescope (GST) is a scientific facility for studies of the Sun named after Philip R. Goode. It is the solar telescope with the world's largest aperture in operation. Located in Big Bear Lake; California, the Goode Solar Telescope is the main telescope of the Big Bear Solar Observatory operated by the New Jersey Institute of Technology (NJIT). Initially named New Solar Telescope (NST), first engineering light was obtained in December 2008, and scientific observations of the Sun began in January 2009. On July 17, 2017, the NST was renamed in honor of Goode, a former, and founding director of NJIT's Center for Solar-Terrestrial Research and the principal investigator of the facility. Goode conceived, raised the funds, and assembled the team that built and commissioned the telescope, which is the highest resolution solar telescope in the world and the first facility class solar telescope built in the U.S. in a generation.

References

  1. "Telescope Mirrors from Antifreeze? - Sky & Telescope". Sky & Telescope. 2008-11-07. Retrieved 2016-02-02.
  2. 1 2 "Liquid mirror shows promise for adaptive optics - physicsworld.com". physicsworld.com. 2008-07-24. Retrieved 2016-02-11.
  3. Brousseau, Denis; Borra, Ermanno F.; Thibault, Simon (2007-12-24). "Wavefront correction with a 37-actuator ferrofluid deformable mirror". Optics Express. 15 (26): 18190–9. Bibcode:2007OExpr..1518190B. doi: 10.1364/OE.15.018190 . PMID   19551117 . Retrieved 2016-02-02.
  4. Brousseau, D.; Borra, E. F. (2010-01-01). "Ferrofluid deformable mirrors: recent advances and results". Adaptive Optics Systems II. 7736. pp. 77362U–77362U–8. doi:10.1117/12.856121.
  5. 1 2 Yockell-Lelievre, Helene; Silva, Da; Vieira, L.; Thibault, Simon; Robitaille, Nathalie; Rioux, Myriam; Ritcey, Anna-Marie R.; Gingras, Julie; Borra, Ermanno F.; Berube, Vincent; Bergamasco, R.; Laird, Phil R. "Ferrofluid based deformable mirrors: a new approach to adaptive optics using liquid mirrors". Adaptive Optical System Technologies Ii. Retrieved 2016-02-02.
  6. 1 2 Chen, Dennis H. (2014-07-21). "The Ferrofluid Deformable Mirror Concept". arks.princeton.edu. Retrieved 2016-02-02.
  7. Hecht, Jeff. "Morphing mirror could clear the skies for astronomers". New Scientist. Retrieved 2016-02-02.
  8. Borra, Ermanno; Déry, Jean-Philippe; Senkow, Stéphanie; Ritcey, Anna (May 21, 2013), Magnetically deformable ferrofluids and mirrors , retrieved 2016-02-11
  9. 1 2 Brousseau, Denis; Borra, Ermanno F.; Jean-Ruel, Hubert; Parent, Jocelyn; Ritcey, Anna (2006-11-27). "A magnetic liquid deformable mirror for high stroke and low order axially symmetrical aberrations". Optics Express. 14 (24): 11486. arXiv: physics/0611160 . Bibcode:2006OExpr..1411486B. doi:10.1364/oe.14.011486. PMID   19529567.