Liquid-mirror telescope

Last updated
A liquid-mirror telescope. In this design, the optical sensors are mounted above the mirror, in a module at its focus, and the motor and bearings that turn the mirror are in the same module as the sensors. The mirror is suspended below. Liquid Mirror Telescope.jpg
A liquid-mirror telescope. In this design, the optical sensors are mounted above the mirror, in a module at its focus, and the motor and bearings that turn the mirror are in the same module as the sensors. The mirror is suspended below.

Liquid-mirror telescopes are telescopes with mirrors made with a reflective liquid. The most common liquid used is mercury, but other liquids will work as well (for example, low-melting point alloys of gallium). The liquid and its container are rotated at a constant speed around a vertical axis, which causes the surface of the liquid to assume a paraboloidal shape. This parabolic reflector can serve as the primary mirror of a reflecting telescope. The rotating liquid assumes the same surface shape regardless of the container's shape; to reduce the amount of liquid metal needed, and thus weight, a rotating mercury mirror uses a container that is as close to the necessary parabolic shape as feasible. Liquid mirrors can be a low-cost alternative to conventional large telescopes. Compared to a solid glass mirror that must be cast, ground, and polished, a rotating liquid-metal mirror is much less expensive to manufacture.

Contents

Isaac Newton noted that the free surface of a rotating liquid forms a circular paraboloid and can therefore be used as a telescope, but he could not build one because he had no way to stabilize the speed of rotation. [1] The concept was further developed by Ernesto Capocci (1798–1864) of the Naples Observatory (1850), [2] [3] but it was not until 1872 that Henry Skey of Dunedin, New Zealand, constructed the first working laboratory liquid-mirror telescope.

Another difficulty is that a liquid-metal mirror can only be used in zenith telescopes, i.e., that look straight up, so it is not suitable for investigations where the telescope must remain pointing at the same location of inertial space (a possible exception to this rule may exist for a liquid-mirror space telescope, where the effect of Earth's gravity is replaced by artificial gravity, perhaps by propelling it gently forward with rockets). Only a telescope located at the North Pole or South Pole would offer a relatively static view of the sky, although the freezing point of mercury and the remoteness of the location would need to be considered. A radio telescope already exists at the South Pole, but the same is not the case with the North Pole as it is located in the Arctic Ocean.

The mercury mirror of the Large Zenith Telescope in Canada was the largest liquid-metal mirror ever built. It had a diameter of 6 meters and rotated at a rate of about 8.5  revolutions per minute. It was decommissioned in 2016. [4] This mirror was a test, built for $1 million, but it was not suitable for astronomy because of the test site's weather. As of 2006, [5] plans were being made to build a larger 8-meter liquid-mirror telescope ALPACA for astronomical use, [6] and a larger project called LAMA with 66 individual 6.15-meter telescopes with a total collecting power equal to a 55-meter telescope, resolving power of a 70-meter scope. [7] [8]

Parabolic shape formed by a liquid surface under rotation. Two liquids of different densities fill a narrow space between two sheets of transparent plastic. The gap between the sheets is closed at the bottom, sides and top. The whole assembly is rotating around a vertical axis passing through the centre. Parabola shape in rotating layers of fluid.jpg
Parabolic shape formed by a liquid surface under rotation. Two liquids of different densities fill a narrow space between two sheets of transparent plastic. The gap between the sheets is closed at the bottom, sides and top. The whole assembly is rotating around a vertical axis passing through the centre.

Explanation of the equilibrium

The force of gravity (red), the buoyancy force (green), and the resultant centripetal force (blue) Forces in a Parabolic Dish.svg
The force of gravity (red), the buoyancy force (green), and the resultant centripetal force (blue)

In the following discussion, represents the acceleration due to gravity, represents the angular speed of the liquid's rotation, in radians per second, is the mass of an infinitesimal parcel of liquid material on the surface of the liquid, is the distance of the parcel from the axis of rotation, and is the height of the parcel above a zero to be defined in the calculation.

The force diagram (shown) represents a snapshot of the forces acting on the parcel, in a non-rotating frame of reference. The direction of each arrow shows the direction of a force, and the length of the arrow shows the force's strength. The red arrow represents the weight of the parcel, caused by gravity and directed vertically downward. The green arrow shows the buoyancy force exerted on the parcel by the bulk of the liquid. Since, in equilibrium, the liquid cannot exert a force parallel with its surface, the green arrow must be perpendicular to the surface. The short blue arrow shows the net force on the parcel. It is the vector sum of the forces of weight and buoyancy, and acts horizontally toward the axis of rotation. (It must be horizontal, since the parcel has no vertical acceleration.) It is the centripetal force that constantly accelerates the parcel toward the axis, keeping it in circular motion as the liquid rotates.

The buoyancy force (green arrow) has a vertical component, which must equal the weight of the parcel (red arrow), and the horizontal component of the buoyancy force must equal the centripetal force (blue arrow). Therefore, the green arrow is tilted from the vertical by an angle whose tangent is the quotient of these forces. Since the green arrow is perpendicular to the surface of the liquid, the slope of the surface must be the same quotient of the forces:

Cancelling the on both sides, integrating, and setting when leads to

This is of the form , where is a constant, showing that the surface is, by definition, a paraboloid.

Rotation speed and focal length

The equation of the paraboloid in terms of its focal length (see Parabolic reflector#Theory) can be written as

where is the focal length, and and are defined as above.

Dividing this equation by the last one above it eliminates and and leads to

which relates the angular velocity of the rotation of the liquid to the focal length of the paraboloid that is produced by the rotation. Note that no other variables are involved. The density of the liquid, for example, has no effect on the focal length of the paraboloid. The units must be consistent, e.g. may be in metres, in radians per second, and in metres per second-squared.

If we write for the numerical value of the focal length in metres, and for the numerical value of the rotation speed in revolutions per minute (RPM), [9] then on the Earth's surface, where is approximately 9.81 metres per second-squared, the last equation reduces to the approximation

If the focal length is in feet instead of metres, this approximation becomes

The rotation speed is still in RPM.

Liquid-mirror telescopes

Conventional land-based liquid-mirror telescopes

These are made of liquid stored in a cylindrical container made of a composite material, such as Kevlar. The cylinder is spun until it reaches a few revolutions per minute. The liquid gradually forms a paraboloid, the shape of a conventional telescopic mirror. The mirror's surface is very precise, and small imperfections in the cylinder's shape do not affect it. The amount of mercury used is small, less than a millimeter in thickness.

Moon-based liquid-mirror telescopes

Low-temperature ionic liquids (below 130  kelvins) have been proposed [10] as the fluid base for an extremely large-diameter spinning liquid-mirror telescope to be based on the Moon. Low temperature is advantageous in imaging long-wave infrared light, which is the form of light (extremely red-shifted) that arrives from the most distant parts of the visible universe. Such a liquid base would be covered by a thin metallic film that forms the reflective surface.

Space-based ring liquid-mirror telescopes

The Rice liquid-mirror telescope design is similar to conventional liquid-mirror telescopes. It will only work in space; but in orbit, gravity will not distort the mirror's shape into a paraboloid. The design features a liquid stored in a flat-bottomed ring-shaped container with raised interior edges. The central focal area would be rectangular, but a secondary rectangular-parabolic mirror would gather the light to a focal point. Otherwise the optics are similar to other optical telescopes. The light gathering power of a Rice telescope is equivalent to approximately the width times the diameter of the ring, minus some fraction based on optics, superstructure design, etc.

Advantages and disadvantages

The greatest advantage of a liquid mirror is its small cost, about 1% of a conventional telescope mirror. This cuts down the cost of the entire telescope at least 95%. The University of British Columbia’s 6-meter Large Zenith Telescope cost about a fiftieth as much as a conventional telescope with a glass mirror. [11] The greatest disadvantage is that the mirror can only be pointed straight up. Research is underway to develop telescopes that can be tilted, but currently if a liquid mirror were to tilt out of the zenith, it would lose its shape. Therefore, the mirror's view changes as the Earth rotates, and objects cannot be physically tracked. An object can be briefly electronically tracked while in the field of view by shifting electrons across the CCD at the same speed as the image moves; this tactic is called time delay and integration or drift scanning. [12] Some types of astronomical research are unaffected by these limitations, such as long-term sky surveys and supernova searches. Since the universe is believed to be isotropic and homogeneous (this is called the cosmological principle), the investigation of its structure by cosmologists can also use telescopes highly reduced in their direction of view.

Since mercury vapor is toxic to humans and animals, there remains a problem for its use in any telescope where it may affect its users and others in its area. In the Large Zenith Telescope, the mercury mirror and the human operators are housed in separately ventilated rooms. At its location in the Canadian mountains, the ambient temperature is fairly low, which reduces the rate of evaporation of the mercury. The less toxic metal gallium may be used instead of mercury, but it has the disadvantage of high cost. Recently Canadian researchers have proposed the substitution of magnetically deformable liquid mirrors composed of a suspension of iron and silver nanoparticles in ethylene glycol. In addition to low toxicity and relatively low cost, such a mirror would have the advantage of being easily and rapidly deformable using variations of magnetic field strength. [13] [14]

Gyroscopic effects

Usually, the mirror of a liquid-mirror telescope is rotated around two axes simultaneously. For example, the mirror of a telescope on the surface of the Earth rotates at a speed of a few revolutions per minute about a vertical axis to maintain its parabolic shape, and also at a speed of one revolution per day about the Earth's axis because of the rotation of the Earth. Usually (except if the telescope is located at one of the Earth's poles), the two rotations interact so that, in a frame of reference that is stationary relative to the local surface of the Earth, the mirror experiences a torque about an axis that is perpendicular to both rotation axes, i.e. a horizontal axis aligned east–west. Since the mirror is liquid, it responds to this torque by changing its aim direction. The point in the sky at which the mirror is aimed is not exactly overhead, but is displaced slightly to the north or south. The amount of the displacement depends on the latitude, the rotation speeds, and the parameters of the telescope's design. On the Earth, the displacement is small, typically a few arcseconds, which can, nevertheless, be significant in astronomical observations. If the telescope were in space, rotating to produce artificial gravity, the displacement could be much larger, possibly many degrees. This would add complexity to the operation of the telescope.

List of liquid mirror telescopes

Various prototypes exist historically. Following a resurgence of interest in the technology in the 1980s, several projects came to fruition.

See also

Notes

  1. "What is an LMT?".
  2. Capocci (1850). "M. Quetelet lit extraits suivants d'une lettre de M. Capocci, astronome à Naples" [Mr. Quetelet reads the following extracts from a letter from Mr. Capocci, an astronomer at Naples]. Bulletins de l'Académie Royale des Sciences, des Lettres et des Beaux-arts de Belgique (in French). 17, pt. 2: 299–302. From p. 300: "Il agit d'obtenir, à peu de frais, de grands mirroirs parfaits, même paraboliques. […] de manière à rassembler parfaitement les rayons réfléchis en un point, … " (It is a matter of obtaining, at low cost, large perfect mirrors, even parabolic [ones]. I think that if a suitable rotational movement were given to a circular canister [that was] filled with mercury, and [if] this movement were well executed and uniform, it would end up by making the surface of the liquid so arranged as to perfectly collect the reflected rays into a point, … )
  3. During the winter of 1850, the Dutch astronomer Friedrich Wilhelm Christian Krecke (1812 – 1882) performed Capocci's proposed experiment: he suspended a bowl of mercury by a twisted cord; as the cord unwound, the mercury adopted the shape of a paraboloid. The mirror produced impressive reflections of a gas chandelier. See: Krecke (1851). "M. Quetelet fait part d'une lettre qu'il a reçu de M. Krecke, …" [Mr. Quetelet published part of a letter that he received from Mr. Krecke, …]. Bulletins de l'Académie Royale des Sciences, des Lettres et des Beaux-arts de Belgique (in French). 18, pt. 1: 363–365.
  4. Physics Footnotes: Liquid Mirror Telescopes.
  5. Crotts, Arlin P.; ALPACA Consortium (2006-12-01). "ALPACA: An Inexpensive but Uniquely Powerful Imaging Survey Telescope". American Astronomical Society Meeting Abstracts. 209: 99.05. Bibcode:2006AAS...209.9905C.
  6. ALPACA overview.
  7. Hickson, Paul; Lanzetta, Kenneth M. (2004). "Large aperture mirror array (LAMA): Project overview". In Ardeberg, Arne L; Andersen, Torben (eds.). Second Backaskog Workshop on Extremely Large Telescopes. Vol. 5382. pp. 115–126. doi:10.1117/12.566118. hdl:2429/37487. S2CID   43104264.
  8. The University of British-Columbia Liquid-Mirror Observatory - Perfecting the next generation of super telescopes.
  9. Thus F and S are dimensionless numbers. 30 RPM = radians per second.
  10. Borra, Ermanno F.; et al. (21 June 2007). "Deposition of metal films on an ionic liquid as a basis for a lunar telescope". Nature. 447 (7147): 979–981. Bibcode:2007Natur.447..979B. doi:10.1038/nature05909. PMID   17581579. S2CID   1977373.
  11. "Liquid-mirror telescope set to give stargazing a new spin". Govert Schilling. 2003-03-14. Archived from the original on 2003-08-18. Retrieved 2008-10-11.
  12. Rabinowitz, David. "Drift Scanning (Time-Delay Integration" (PDF). Yale University Center for Astronomy and Astrophysics. Caltech. Archived from the original (PDF) on 27 April 2015. Retrieved 27 April 2015.
  13. American Chemical Society (2008, November 12) (November 12, 2008). "'Liquid Mirror' Advance May Lead To Better Eye Exams, Improved Telescopes". Science News. Science Daily (online). Archived from the original on 2015-04-27. Retrieved November 24, 2009.{{cite news}}: CS1 maint: numeric names: authors list (link)
  14. Déry, J. P.; Borra, E. F.; Ritcey, A. M. (2008). "Ethylene Glycol Based Ferrofluid for the Fabrication of Magnetically Deformable Liquid Mirrors". Chemistry of Materials. 20 (20): 6420. doi: 10.1021/cm801075u .
  15. "Liquid mirror telescope opens in India". American Association for the Advancement of Science (AAAS). 10 June 2022. doi:10.1126/science.add4293.{{cite journal}}: Cite journal requires |journal= (help)

Related Research Articles

Isaac Newton's rotating bucket argument was designed to demonstrate that true rotational motion cannot be defined as the relative rotation of the body with respect to the immediately surrounding bodies. It is one of five arguments from the "properties, causes, and effects" of "true motion and rest" that support his contention that, in general, true motion and rest cannot be defined as special instances of motion or rest relative to other bodies, but instead can be defined only by reference to absolute space. Alternatively, these experiments provide an operational definition of what is meant by "absolute rotation", and do not pretend to address the question of "rotation relative to what?" General relativity dispenses with absolute space and with physics whose cause is external to the system, with the concept of geodesics of spacetime.

<span class="mw-page-title-main">Coriolis force</span> Apparent force in a rotating reference frame

In physics, the Coriolis force is an inertial force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motion of the object. In one with anticlockwise rotation, the force acts to the right. Deflection of an object due to the Coriolis force is called the Coriolis effect. Though recognized previously by others, the mathematical expression for the Coriolis force appeared in an 1835 paper by French scientist Gaspard-Gustave de Coriolis, in connection with the theory of water wheels. Early in the 20th century, the term Coriolis force began to be used in connection with meteorology.

<span class="mw-page-title-main">Parabola</span> Plane curve: conic section

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

<span class="mw-page-title-main">Precession</span> Periodic change in the direction of a rotation axis

Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In other words, if the axis of rotation of a body is itself rotating about a second axis, that body is said to be precessing about the second axis. A motion in which the second Euler angle changes is called nutation. In physics, there are two types of precession: torque-free and torque-induced.

<span class="mw-page-title-main">Paraboloid</span> Quadric surface with one axis of symmetry and no center of symmetry

In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry.

<span class="mw-page-title-main">Vortex</span> Fluid flow revolving around an axis of rotation

In fluid dynamics, a vortex is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in the wake of a boat, and the winds surrounding a tropical cyclone, tornado or dust devil.

<span class="mw-page-title-main">Parabolic reflector</span> Reflector that has the shape of a paraboloid

A parabolicreflector is a reflective surface used to collect or project energy such as light, sound, or radio waves. Its shape is part of a circular paraboloid, that is, the surface generated by a parabola revolving around its axis. The parabolic reflector transforms an incoming plane wave travelling along the axis into a spherical wave converging toward the focus. Conversely, a spherical wave generated by a point source placed in the focus is reflected into a plane wave propagating as a collimated beam along the axis.

<span class="mw-page-title-main">Parabolic antenna</span> Type of antenna

A parabolic antenna is an antenna that uses a parabolic reflector, a curved surface with the cross-sectional shape of a parabola, to direct the radio waves. The most common form is shaped like a dish and is popularly called a dish antenna or parabolic dish. The main advantage of a parabolic antenna is that it has high directivity. It functions similarly to a searchlight or flashlight reflector to direct radio waves in a narrow beam, or receive radio waves from one particular direction only. Parabolic antennas have some of the highest gains, meaning that they can produce the narrowest beamwidths, of any antenna type. In order to achieve narrow beamwidths, the parabolic reflector must be much larger than the wavelength of the radio waves used, so parabolic antennas are used in the high frequency part of the radio spectrum, at UHF and microwave (SHF) frequencies, at which the wavelengths are small enough that conveniently sized reflectors can be used.

<span class="mw-page-title-main">Spherical aberration</span> Optical aberration

In optics, spherical aberration (SA) is a type of aberration found in optical systems that have elements with spherical surfaces. This phenomenon commonly affects lenses and curved mirrors, as these components are often shaped in a spherical manner for ease of manufacturing. Light rays that strike a spherical surface off-centre are refracted or reflected more or less than those that strike close to the centre. This deviation reduces the quality of images produced by optical systems. The effect of spherical aberration was first identified in the 11th century by Ibn al-Haytham who discussed it in his work Kitāb al-Manāẓir.

<span class="mw-page-title-main">Reflecting telescope</span> Telescopes which utilize curved mirrors to form an image

A reflecting telescope is a telescope that uses a single or a combination of curved mirrors that reflect light and form an image. The reflecting telescope was invented in the 17th century by Isaac Newton as an alternative to the refracting telescope which, at that time, was a design that suffered from severe chromatic aberration. Although reflecting telescopes produce other types of optical aberrations, it is a design that allows for very large diameter objectives. Almost all of the major telescopes used in astronomy research are reflectors. Many variant forms are in use and some employ extra optical elements to improve image quality or place the image in a mechanically advantageous position. Since reflecting telescopes use mirrors, the design is sometimes referred to as a catoptric telescope.

<span class="mw-page-title-main">Rotating furnace</span>

A rotating furnace is a device for making solid objects which have concave surfaces that are segments of axially symmetrical paraboloids. Usually, the objects are made of glass. The furnace makes use of the fact, which was known already to Newton, that the centrifugal-force-induced shape of the top surface of a spinning liquid is a concave paraboloid, identical to the shape of a reflecting telescope's primary focusing mirror.

<span class="mw-page-title-main">Solar cooker</span> Device for cooking with the heat of sunlight

A solar cooker is a device which uses the energy of direct sunlight to heat, cook or pasteurize drink and other food materials. Many solar cookers currently in use are relatively inexpensive, low-tech devices, although some are as powerful or as expensive as traditional stoves, and advanced, large scale solar cookers can cook for hundreds of people. Because they use no fuel and cost nothing to operate, many nonprofit organizations are promoting their use worldwide in order to help reduce fuel costs and air pollution, and to help slow down deforestation and desertification.

<span class="mw-page-title-main">Cassegrain reflector</span> Combination of concave and convex mirrors

The Cassegrain reflector is a combination of a primary concave mirror and a secondary convex mirror, often used in optical telescopes and radio antennas, the main characteristic being that the optical path folds back onto itself, relative to the optical system's primary mirror entrance aperture. This design puts the focal point at a convenient location behind the primary mirror and the convex secondary adds a telephoto effect creating a much longer focal length in a mechanically short system.

The Pfund telescope, originated by A.H. Pfund, provides an alternative method for achieving a fixed telescope focal point in space regardless of where the telescope line of sight is pointed.

<span class="mw-page-title-main">Curved mirror</span> Mirror with a curved reflecting surface

A curved mirror is a mirror with a curved reflecting surface. The surface may be either convex or concave. Most curved mirrors have surfaces that are shaped like part of a sphere, but other shapes are sometimes used in optical devices. The most common non-spherical type are parabolic reflectors, found in optical devices such as reflecting telescopes that need to image distant objects, since spherical mirror systems, like spherical lenses, suffer from spherical aberration. Distorting mirrors are used for entertainment. They have convex and concave regions that produce deliberately distorted images. They also provide highly magnified or highly diminished (smaller) images when the object is placed at certain distances.

A liquid-mirror space telescope is a concept for a reflecting space telescope that uses a reflecting liquid such as mercury as its primary reflector.

<span class="mw-page-title-main">Free surface</span> Surface of a fluid that is subject to zero parallel shear stress

In physics, a free surface is the surface of a fluid that is subject to zero parallel shear stress, such as the interface between two homogeneous fluids. An example of two such homogeneous fluids would be a body of water (liquid) and the air in the Earth's atmosphere. Unlike liquids, gases cannot form a free surface on their own. Fluidized/liquified solids, including slurries, granular materials, and powders may form a free surface.

The spinning drop method or rotating drop method is one of the methods used to measure interfacial tension. Measurements are carried out in a rotating horizontal tube which contains a dense fluid. A drop of a less dense liquid or a gas bubble is placed inside the fluid. Since the rotation of the horizontal tube creates a centrifugal force towards the tube walls, the liquid drop will start to deform into an elongated shape; this elongation stops when the interfacial tension and centrifugal forces are balanced. The surface tension between the two liquids can then be derived from the shape of the drop at this equilibrium point. A device used for such measurements is called a “spinning drop tensiometer”.

Spin casting is a technique for constructing large parabolic mirrors by using the curved surface formed by a rotating liquid. It is distinct from the spin casting or centrifugal rubber mold casting (CRMC) technique used for casting metal or plastics.

The International Liquid Mirror Telescope is a 4-meter telescope in Uttarakhand, India. It is the first liquid-mirror telescope for astronomy in Asia and the largest liquid-mirror telescope in Asia.

References