Filter (large eddy simulation)

Last updated

Filtering in the context of large eddy simulation (LES) is a mathematical operation intended to remove a range of small scales from the solution to the Navier-Stokes equations. Because the principal difficulty in simulating turbulent flows comes from the wide range of length and time scales, this operation makes turbulent flow simulation cheaper by reducing the range of scales that must be resolved. The LES filter operation is low-pass, meaning it filters out the scales associated with high frequencies.

Contents

Homogeneous filters

A velocity field produced by a direct numerical simulation (DNS) of homogeneous decaying turbulence. The domain size is L. DNS Velocity Field.png
A velocity field produced by a direct numerical simulation (DNS) of homogeneous decaying turbulence. The domain size is L.
The same DNS velocity field filtered using a box filter and D = L/32 DNS Filtered Velocity Field Small.png
The same DNS velocity field filtered using a box filter and Δ = L/32
The same DNS velocity field filtered using a box filter and D = L/16 DNS Filtered Velocity Field Large.png
The same DNS velocity field filtered using a box filter and Δ = L/16

Definition in physical space

The low-pass filtering operation used in LES can be applied to a spatial and temporal field, for example . The LES filter operation may be spatial, temporal, or both. The filtered field, denoted with a bar, is defined as: [1] [2]

where is a convolution kernel unique to the filter type used. This can be written as a convolution operation:

The filter kernel uses cutoff length and time scales, denoted and respectively. Scales smaller than these are eliminated from Using this definition, any field may be split up into a filtered and sub-filtered (denoted with a prime) portion, as

This can also be written as a convolution operation,

Definition in spectral space

The filtering operation removes scales associated with high frequencies, and the operation can accordingly be interpreted in Fourier space. For a scalar field the Fourier transform of is a function of the spatial wave number, and the temporal frequency. can be filtered by the corresponding Fourier transform of the filter kernel, denoted

or,

The filter width has an associated cutoff wave number and the temporal filter width also has an associated cutoff frequency The unfiltered portion of is:

The spectral interpretation of the filtering operation is essential to the filtering operation in large eddy simulation, as the spectra of turbulent flows is central to LES subgrid-scale models, which reconstruct the effect of the sub-filter scales (the highest frequencies). One of the challenges in subgrid modeling is to effectively mimic the cascade of kinetic energy from low to high frequencies. This makes the spectral properties of the implemented LES filter very important to subgrid modeling efforts.

Homogeneous filter properties

Homogeneous LES filters must satisfy the following set of properties when applied to the Navier-Stokes equations. [1]

1. Conservation of constants
The value of a filtered constant must be equal to the constant,
which implies,
2. Linearity
3. Commutation with derivatives
If notation is introduced for operator commutation for two arbitrary operators and , where
then this third property can be expressed as

Filters satisfying these properties are generally not Reynolds operators, meaning, first:

and second,

Inhomogeneous filters

Implementations of filtering operations for all but the simplest flows are inhomogeneous filter operations. This means that the flow either has non-periodic boundaries, causing problems with certain types of filters, or has a non-constant filter width , or both. This prevents the filter from commuting with derivatives, and the commutation operation leads to several additional error terms:

where is the vector normal to the surface of the boundary and [1]

The two terms both appear due to inhomogeneities. The first is due to the spatial variation in the filter size while the second is due to the domain boundary. Similarly, the commutation of the filter with the temporal derivative leads to an error term resulting from temporal variation in the filter size,

Several filter operations which eliminate or minimize these error terms have been proposed.[ citation needed ]

Classic large eddy simulation filters

Turbulent energy spectrum and effect of filtering operations EnergySpectrumAndFilteringOperations.png
Turbulent energy spectrum and effect of filtering operations

There are three filters ordinarily used for spatial filtering in large eddy simulation. The definition of and and a discussion of important properties, is given. [2]

Box filter

Box filter in physical and spectral space Box filter.png
Box filter in physical and spectral space

The filter kernel in physical space is given by:

The filter kernel in spectral space is given by:

Gaussian filter in physical and spectral space Gaussian filter.png
Gaussian filter in physical and spectral space

Gaussian filter

The filter kernel in physical space is given by:

The filter kernel in spectral space is given by:

Sharp spectral filter in physical and spectral space Cutoff filter.png
Sharp spectral filter in physical and spectral space

Sharp spectral filter

The filter kernel in physical space is given by:

The filter kernel in spectral space is given by:

See also

Related Research Articles

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical physics, the Dirac delta distribution, also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In the calculus of variations, a field of mathematical analysis, the functional derivative relates a change in a functional to a change in a function on which the functional depends.

In mathematical analysis, a function of bounded variation, also known as BV function, is a real-valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis, neglecting the contribution of motion along x-axis, traveled by a point moving along the graph has a finite value. For a continuous function of several variables, the meaning of the definition is the same, except for the fact that the continuous path to be considered cannot be the whole graph of the given function, but can be every intersection of the graph itself with a hyperplane parallel to a fixed x-axis and to the y-axis.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

<span class="mw-page-title-main">Large eddy simulation</span>

Large eddy simulation (LES) is a mathematical model for turbulence used in computational fluid dynamics. It was initially proposed in 1963 by Joseph Smagorinsky to simulate atmospheric air currents, and first explored by Deardorff (1970). LES is currently applied in a wide variety of engineering applications, including combustion, acoustics, and simulations of the atmospheric boundary layer.

In theoretical physics, the Weyl transformation, named after Hermann Weyl, is a local rescaling of the metric tensor:

<span class="mw-page-title-main">Flow (mathematics)</span> Motion of particles in a fluid

In mathematics, a flow formalizes the idea of the motion of particles in a fluid. Flows are ubiquitous in science, including engineering and physics. The notion of flow is basic to the study of ordinary differential equations. Informally, a flow may be viewed as a continuous motion of points over time. More formally, a flow is a group action of the real numbers on a set.

In differential calculus, the Reynolds transport theorem, or simply the Reynolds theorem, named after Osborne Reynolds (1842–1912), is a three-dimensional generalization of the Leibniz integral rule. It is used to recast time derivatives of integrated quantities and is useful in formulating the basic equations of continuum mechanics.

<span class="mw-page-title-main">Heat kernel</span> Fundamental solution to the heat equation, given boundary values

In the mathematical study of heat conduction and diffusion, a heat kernel is the fundamental solution to the heat equation on a specified domain with appropriate boundary conditions. It is also one of the main tools in the study of the spectrum of the Laplace operator, and is thus of some auxiliary importance throughout mathematical physics. The heat kernel represents the evolution of temperature in a region whose boundary is held fixed at a particular temperature, such that an initial unit of heat energy is placed at a point at time t = 0.

<span class="mw-page-title-main">Navier–Stokes existence and smoothness</span> Millennium Prize Problem

The Navier–Stokes existence and smoothness problem concerns the mathematical properties of solutions to the Navier–Stokes equations, a system of partial differential equations that describe the motion of a fluid in space. Solutions to the Navier–Stokes equations are used in many practical applications. However, theoretical understanding of the solutions to these equations is incomplete. In particular, solutions of the Navier–Stokes equations often include turbulence, which remains one of the greatest unsolved problems in physics, despite its immense importance in science and engineering.

The method of reassignment is a technique for sharpening a time-frequency representation by mapping the data to time-frequency coordinates that are nearer to the true region of support of the analyzed signal. The method has been independently introduced by several parties under various names, including method of reassignment, remapping, time-frequency reassignment, and modified moving-window method. In the case of the spectrogram or the short-time Fourier transform, the method of reassignment sharpens blurry time-frequency data by relocating the data according to local estimates of instantaneous frequency and group delay. This mapping to reassigned time-frequency coordinates is very precise for signals that are separable in time and frequency with respect to the analysis window.

In applied mathematics, discontinuous Galerkin methods (DG methods) form a class of numerical methods for solving differential equations. They combine features of the finite element and the finite volume framework and have been successfully applied to hyperbolic, elliptic, parabolic and mixed form problems arising from a wide range of applications. DG methods have in particular received considerable interest for problems with a dominant first-order part, e.g. in electrodynamics, fluid mechanics and plasma physics.

Acoustic streaming is a steady flow in a fluid driven by the absorption of high amplitude acoustic oscillations. This phenomenon can be observed near sound emitters, or in the standing waves within a Kundt's tube. Acoustic streaming was explained first by Lord Rayleigh in 1884. It is the less-known opposite of sound generation by a flow.

<span class="mw-page-title-main">Mild-slope equation</span> Physics phenomenon and formula

In fluid dynamics, the mild-slope equation describes the combined effects of diffraction and refraction for water waves propagating over bathymetry and due to lateral boundaries—like breakwaters and coastlines. It is an approximate model, deriving its name from being originally developed for wave propagation over mild slopes of the sea floor. The mild-slope equation is often used in coastal engineering to compute the wave-field changes near harbours and coasts.

An electric dipole transition is the dominant effect of an interaction of an electron in an atom with the electromagnetic field.

In mathematics, the Bussgang theorem is a theorem of stochastic analysis. The theorem states that the cross-correlation of a Gaussian signal before and after it has passed through a nonlinear operation are equal up to a constant. It was first published by Julian J. Bussgang in 1952 while he was at the Massachusetts Institute of Technology.

Multipole radiation is a theoretical framework for the description of electromagnetic or gravitational radiation from time-dependent distributions of distant sources. These tools are applied to physical phenomena which occur at a variety of length scales - from gravitational waves due to galaxy collisions to gamma radiation resulting from nuclear decay. Multipole radiation is analyzed using similar multipole expansion techniques that describe fields from static sources, however there are important differences in the details of the analysis because multipole radiation fields behave quite differently from static fields. This article is primarily concerned with electromagnetic multipole radiation, although the treatment of gravitational waves is similar.

The Bueno-Orovio–Cherry–Fenton model, also simply called Bueno-Orovio model, is a minimal ionic model for human ventricular cells. It belongs to the category of phenomenological models, because of its characteristic of describing the electrophysiological behaviour of cardiac muscle cells without taking into account in a detailed way the underlying physiology and the specific mechanisms occurring inside the cells.

In the mathematical discipline of functional analysis, a differentiable vector-valued function from Euclidean space is a differentiable function valued in a topological vector space (TVS) whose domains is a subset of some finite-dimensional Euclidean space. It is possible to generalize the notion of derivative to functions whose domain and codomain are subsets of arbitrary topological vector spaces (TVSs) in multiple ways. But when the domain of a TVS-valued function is a subset of a finite-dimensional Euclidean space then many of these notions become logically equivalent resulting in a much more limited number of generalizations of the derivative and additionally, differentiability is also more well-behaved compared to the general case. This article presents the theory of -times continuously differentiable functions on an open subset of Euclidean space , which is an important special case of differentiation between arbitrary TVSs. This importance stems partially from the fact that every finite-dimensional vector subspace of a Hausdorff topological vector space is TVS isomorphic to Euclidean space so that, for example, this special case can be applied to any function whose domain is an arbitrary Hausdorff TVS by restricting it to finite-dimensional vector subspaces.

References

  1. 1 2 3 Sagaut, Pierre (2006). Large Eddy Simulation for Incompressible Flows (Third ed.). Springer. ISBN   3-540-26344-6.
  2. 1 2 Pope, Stephen (2000). Turbulent Flows. Cambridge University Press. ISBN   978-0-521-59886-6.
  3. Laval, Jean-Philippe. "Lecture Notes on DNS and LES for International Masters Program in Turbulence" (PDF). Retrieved 27 January 2020.