Financial models with long-tailed distributions and volatility clustering

Last updated

Financial models with long-tailed distributions and volatility clustering have been introduced to overcome problems with the realism of classical financial models. These classical models of financial time series typically assume homoskedasticity and normality cannot explain stylized phenomena such as skewness, heavy tails, and volatility clustering of the empirical asset returns in finance. In 1963, Benoit Mandelbrot first used the stable (or -stable) distribution to model the empirical distributions which have the skewness and heavy-tail property. Since -stable distributions have infinite -th moments for all , the tempered stable processes have been proposed for overcoming this limitation of the stable distribution.

Contents

On the other hand, GARCH models have been developed to explain the volatility clustering. In the GARCH model, the innovation (or residual) distributions are assumed to be a standard normal distribution, despite the fact that this assumption is often rejected empirically. For this reason, GARCH models with non-normal innovation distribution have been developed.

Many financial models with stable and tempered stable distributions together with volatility clustering have been developed and applied to risk management, option pricing, and portfolio selection.

Infinitely divisible distributions

A random variable is called infinitely divisible if, for each , there are independent and identically-distributed random variables

such that

where denotes equality in distribution.

A Borel measure on is called a Lévy measure if and

If is infinitely divisible, then the characteristic function is given by

where , and is a Lévy measure. Here the triple is called a Lévy triplet of. This triplet is unique. Conversely, for any choice satisfying the conditions above, there exists an infinitely divisible random variable whose characteristic function is given as .

α-Stable distributions

A real-valued random variable is said to have an -stable distribution if for any , there are a positive number and a real number such that

where are independent and have the same distribution as that of . All stable random variables are infinitely divisible. It is known that for some . A stable random variable with index is called an -stable random variable.

Let be an -stable random variable. Then the characteristic function of is given by

for some , and .

Tempered stable distributions

An infinitely divisible distribution is called a classical tempered stable (CTS) distribution with parameter , if its Lévy triplet is given by , and

where and .

This distribution was first introduced by under the name of Truncated Lévy Flights [1] and has been called the tempered stable or the KoBoL distribution. [2] In particular, if , then this distribution is called the CGMY distribution which has been used for financial modeling. [3]

The characteristic function for a tempered stable distribution is given by

for some . Moreover, can be extended to the region .

Rosiński generalized the CTS distribution under the name of the tempered stable distribution. The KR distribution, which is a subclass of the Rosiński's generalized tempered stable distributions, is used in finance. [4]

An infinitely divisible distribution is called a modified tempered stable (MTS) distribution with parameter , if its Lévy triplet is given by , and

where and

Here is the modified Bessel function of the second kind. The MTS distribution is not included in the class of Rosiński's generalized tempered stable distributions. [5]

Volatility clustering with stable and tempered stable innovation

In order to describe the volatility clustering effect of the return process of an asset, the GARCH model can be used. In the GARCH model, innovation () is assumed that , where and where the series are modeled by

and where and .

However, the assumption of is often rejected empirically. For that reason, new GARCH models with stable or tempered stable distributed innovation have been developed. GARCH models with -stable innovations have been introduced. [6] [7] [8] Subsequently, GARCH Models with tempered stable innovations have been developed. [5] [9]

Objections against the use of stable distributions in Financial models are given in [10] [11]

Notes

  1. Koponen, I. (1995) "Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process", Physical Review E, 52, 1197–1199.
  2. S. I. Boyarchenko, S. Z. Levendorskiǐ (2000) "Option pricing for truncated Lévy processes", International Journal of Theoretical and Applied Finance, 3 (3), 549–552
  3. P. Carr, H. Geman, D. Madan, M. Yor (2002) "The Fine Structure of Asset Returns: An Empirical Investigation", Journal of Business, 75 (2), 305–332.
  4. Kim, Y.S.; Rachev, Svetlozar T.;, Bianchi, M.L.; Fabozzi, F.J. (2007) "A New Tempered Stable Distribution and Its Application to Finance". In: Georg Bol, Svetlozar T. Rachev, and Reinold Wuerth (Eds.), Risk Assessment: Decisions in Banking and Finance, Physika Verlag, Springer
  5. 1 2 Kim, Y.S., Chung, D. M., Rachev, Svetlozar T.; M. L. Bianchi, The modified tempered stable distribution, GARCH models and option pricing, Probability and Mathematical Statistics, to appear
  6. C. Menn, Svetlozar T. Rachev (2005) "A GARCH Option Pricing Model with -stable Innovations", European Journal of Operational Research, 163, 201–209
  7. C. Menn, Svetlozar T. Rachev (2005) "Smoothly Truncated Stable Distributions, GARCH-Models, and Option Pricing", Technical report. Statistics and Mathematical Finance School of Economics and Business Engineering, University of Karlsruh
  8. Svetlozar T. Rachev, C. Menn, Frank J. Fabozzi (2005) Fat-Tailed and Skewed Asset Return Distributions: Implications for Risk Management, Portfolio selection, and Option Pricing, Wiley
  9. Kim, Y.S.; Rachev, Svetlozar T.; Michele L. Bianchi, Fabozzi, F.J. (2008) "Financial market models with Lévy processes and time-varying volatility", Journal of Banking & Finance, 32 (7), 1363–1378 doi:10.1016/j.jbankfin.2007.11.004
  10. Lev B. Klebanov, Irina Volchenkova (2015) "Heavy Tailed Distributions in Finance: Reality or Mith? Amateurs Viewpoint", arXiv:1507.07735v1, 1-17.
  11. Lev B Klebanov (2016) "No Stable Distributions in Finance, please!", arXiv:1601.00566v2, 1-9.

Related Research Articles

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

<span class="mw-page-title-main">Exponential distribution</span> Probability distribution

In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the time between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts.

<span class="mw-page-title-main">Weibull distribution</span> Continuous probability distribution

In probability theory and statistics, the Weibull distribution is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.

<span class="mw-page-title-main">Pearson distribution</span> Family of continuous probability distributions

The Pearson distribution is a family of continuous probability distributions. It was first published by Karl Pearson in 1895 and subsequently extended by him in 1901 and 1916 in a series of articles on biostatistics.

Noncentral <i>t</i>-distribution Probability distribution

The noncentral t-distribution generalizes Student's t-distribution using a noncentrality parameter. Whereas the central probability distribution describes how a test statistic t is distributed when the difference tested is null, the noncentral distribution describes how t is distributed when the null is false. This leads to its use in statistics, especially calculating statistical power. The noncentral t-distribution is also known as the singly noncentral t-distribution, and in addition to its primary use in statistical inference, is also used in robust modeling for data.

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

The quantum Heisenberg model, developed by Werner Heisenberg, is a statistical mechanical model used in the study of critical points and phase transitions of magnetic systems, in which the spins of the magnetic systems are treated quantum mechanically. It is related to the prototypical Ising model, where at each site of a lattice, a spin represents a microscopic magnetic dipole to which the magnetic moment is either up or down. Except the coupling between magnetic dipole moments, there is also a multipolar version of Heisenberg model called the multipolar exchange interaction.

<span class="mw-page-title-main">Inverse Gaussian distribution</span> Family of continuous probability distributions

In probability theory, the inverse Gaussian distribution is a two-parameter family of continuous probability distributions with support on (0,∞).

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

In statistics, the inverse Wishart distribution, also called the inverted Wishart distribution, is a probability distribution defined on real-valued positive-definite matrices. In Bayesian statistics it is used as the conjugate prior for the covariance matrix of a multivariate normal distribution.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

<span class="mw-page-title-main">Normal-inverse-gamma distribution</span>

In probability theory and statistics, the normal-inverse-gamma distribution is a four-parameter family of multivariate continuous probability distributions. It is the conjugate prior of a normal distribution with unknown mean and variance.

<span class="mw-page-title-main">Multivariate stable distribution</span>

The multivariate stable distribution is a multivariate probability distribution that is a multivariate generalisation of the univariate stable distribution. The multivariate stable distribution defines linear relations between stable distribution marginals. In the same way as for the univariate case, the distribution is defined in terms of its characteristic function.

<span class="mw-page-title-main">Lomax distribution</span>

The Lomax distribution, conditionally also called the Pareto Type II distribution, is a heavy-tail probability distribution used in business, economics, actuarial science, queueing theory and Internet traffic modeling. It is named after K. S. Lomax. It is essentially a Pareto distribution that has been shifted so that its support begins at zero.

<span class="mw-page-title-main">Relativistic Lagrangian mechanics</span> Mathematical formulation of special and general relativity

In theoretical physics, relativistic Lagrangian mechanics is Lagrangian mechanics applied in the context of special relativity and general relativity.

<span class="mw-page-title-main">Relativistic angular momentum</span> Angular momentum in special and general relativity

In physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics.

Affine gauge theory is classical gauge theory where gauge fields are affine connections on the tangent bundle over a smooth manifold . For instance, these are gauge theory of dislocations in continuous media when , the generalization of metric-affine gravitation theory when is a world manifold and, in particular, gauge theory of the fifth force.

<span class="mw-page-title-main">Stable count distribution</span> Probability distribution

In probability theory, the stable count distribution is the conjugate prior of a one-sided stable distribution. This distribution was discovered by Stephen Lihn in his 2017 study of daily distributions of the S&P 500 and the VIX. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.

References