In applied mathematics, the finite pointset method (FPM) is a general approach for the numerical solution of problems in continuum mechanics, such as the simulation of fluid flows. In this approach the medium is represented by a finite set of points, each endowed with the relevant local properties of the medium such as density, velocity, pressure, and temperature. [1]
The sampling points can move with the medium, as in the Lagrangian approach to fluid dynamics or they may be fixed in space while the medium flows through them, as in the Eulerian approach. A mixed Lagrangian-Eulerian approach may also be used. The Lagrangian approach is also known (especially in the computer graphics field) as particle method.
Finite pointset methods are meshfree methods and therefore are easily adapted to domains with complex and/or time-evolving geometries and moving phase boundaries (such as a liquid splashing into a container, or the blowing of a glass bottle) without the software complexity that would be required to handle those features with topological data structures. They can be useful in non-linear problems involving viscous fluids, heat and mass transfer, linear and non-linear elastic or plastic deformations, etc.
In the simplest implementations, the finite point set is stored as an unstructured list of points in the medium. In the Lagrangian approach the points move with the medium, and points may be added or deleted in order to maintain a prescribed sampling density. The point density is usually prescribed by a smoothing length defined locally. In the Eulerian approach the points are fixed in space, but new points may be added where there is need for increased accuracy. So, in both approaches the nearest neighbors of a point are not fixed, and are determined again at each time step.
This method has various advantages over grid-based techniques; for example, it can handle fluid domains, which change naturally, whereas grid based techniques require additional computational effort. The finite points have to completely cover the whole flow domain, i.e. the point cloud has to fulfill certain quality criteria (finite points are not allowed to form “holes” which means finite points have to find sufficiently numerous neighbours; also, finite points are not allowed to cluster; etc.).
The finite point cloud is a geometrical basis, which allows for a numerical formulation making FPM a general finite difference idea applied to continuum mechanics. That especially means, if the point reduced to a regular cubic point grid, then FPM would reduce to a classical finite difference method. The idea of general finite differences also means that FPM is not based on a weak formulation like Galerkin's approach. Rather, FPM is a strong formulation which models differential equations by direct approximation of the occurring differential operators. The method used is a moving least squares idea which was especially developed for FPM.
In order to overcome the disadvantages of the classical methods many approaches have been developed to simulate such flows. [2] [3] [4] [5] [6] [7] A classical grid free Lagrangian method is Smoothed Particle Hydrodynamics (SPH), which was originally introduced to solve problems in astrophysics. [8] [9]
It has since been extended to simulate the compressible Euler equations in fluid dynamics and applied to a wide range of problems. [10] [11] [12] The method has also been extended to simulate inviscid incompressible free surface flows. [13] . The implementation of the boundary conditions is the main problem of the SPH method.
Another approach for solving fluid dynamic equations in a grid free framework is the moving least squares or least squares method. [1] [14] [15] [16] [17] [7] With this approach boundary conditions can be implemented in a natural way just by placing the finite points on boundaries and prescribing boundary conditions on them. [15] The robustness of this method is shown by the simulation results in the field of airbag deployment in car industry. Here, the membrane (or boundary) of the airbag changes very rapidly in time and takes a quite complicated shape (Kuhnert et al. 2000).
Tiwari et al. (2003) performed simulations of incompressible flows as the limit of the compressible Navier–Stokes equations with some stiff equation of state. [18] This approach was first used in Monaghan (1992) to simulate incompressible free surface flows by SPH. The incompressible limit is obtained by choosing a very large speed of sound in the equation of state such that the Mach number becomes small. However, the large value of the speed of sound restricts the time step to be very small due to the CFL-condition. [10]
The projection method of Chorin is a widely used approach to solve problems governed by the incompressible Navier–Stokes equation in a grid based structure. [19] In Tiwari et al. (2001), this method has been applied to a grid free framework with the help of the weighted least squares method. The scheme gives accurate results for the incompressible Navier–Stokes equations. The occurring Poisson equation for the pressure field is solved by a grid free method. It has been shown that the Poisson equation can be solved accurately by this approach for any boundary conditions. The Poisson solver can be adapted to the weighted least squares approximation procedure with the condition that the Poisson equation and the boundary condition must be satisfied on each finite point. This is a local iteration procedure. [17]
Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid with surfaces defined by boundary conditions. With high-speed supercomputers, better solutions can be achieved, and are often required to solve the largest and most complex problems. Ongoing research yields software that improves the accuracy and speed of complex simulation scenarios such as transonic or turbulent flows. Initial validation of such software is typically performed using experimental apparatus such as wind tunnels. In addition, previously performed analytical or empirical analysis of a particular problem can be used for comparison. A final validation is often performed using full-scale testing, such as flight tests.
Smoothed-particle hydrodynamics (SPH) is a computational method used for simulating the mechanics of continuum media, such as solid mechanics and fluid flows. It was developed by Gingold and Monaghan and Lucy in 1977, initially for astrophysical problems. It has been used in many fields of research, including astrophysics, ballistics, volcanology, and oceanography. It is a meshfree Lagrangian method, and the resolution of the method can easily be adjusted with respect to variables such as density.
In numerical analysis, adaptive mesh refinement (AMR) is a method of adapting the accuracy of a solution within certain sensitive or turbulent regions of simulation, dynamically and during the time the solution is being calculated. When solutions are calculated numerically, they are often limited to predetermined quantified grids as in the Cartesian plane which constitute the computational grid, or 'mesh'. Many problems in numerical analysis, however, do not require a uniform precision in the numerical grids used for graph plotting or computational simulation, and would be better suited if specific areas of graphs which needed precision could be refined in quantification only in the regions requiring the added precision. Adaptive mesh refinement provides such a dynamic programming environment for adapting the precision of the numerical computation based on the requirements of a computation problem in specific areas of multi-dimensional graphs which need precision while leaving the other regions of the multi-dimensional graphs at lower levels of precision and resolution.
Fluid mechanics is the branch of physics concerned with the mechanics of fluids and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology.
Fluid–structure interaction (FSI) is the interaction of some movable or deformable structure with an internal or surrounding fluid flow. Fluid–structure interactions can be stable or oscillatory. In oscillatory interactions, the strain induced in the solid structure causes it to move such that the source of strain is reduced, and the structure returns to its former state only for the process to repeat.
In the field of numerical analysis, meshfree methods are those that do not require connection between nodes of the simulation domain, i.e. a mesh, but are rather based on interaction of each node with all its neighbors. As a consequence, original extensive properties such as mass or kinetic energy are no longer assigned to mesh elements but rather to the single nodes. Meshfree methods enable the simulation of some otherwise difficult types of problems, at the cost of extra computing time and programming effort. The absence of a mesh allows Lagrangian simulations, in which the nodes can move according to the velocity field.
Bram van Leer is Arthur B. Modine Emeritus Professor of aerospace engineering at the University of Michigan, in Ann Arbor. He specializes in Computational fluid dynamics (CFD), fluid dynamics, and numerical analysis. His most influential work lies in CFD, a field he helped modernize from 1970 onwards. An appraisal of his early work has been given by C. Hirsch (1979)
Stokesian dynamics is a solution technique for the Langevin equation, which is the relevant form of Newton's 2nd law for a Brownian particle. The method treats the suspended particles in a discrete sense while the continuum approximation remains valid for the surrounding fluid, i.e., the suspended particles are generally assumed to be significantly larger than the molecules of the solvent. The particles then interact through hydrodynamic forces transmitted via the continuum fluid, and when the particle Reynolds number is small, these forces are determined through the linear Stokes equations. In addition, the method can also resolve non-hydrodynamic forces, such as Brownian forces, arising from the fluctuating motion of the fluid, and interparticle or external forces. Stokesian Dynamics can thus be applied to a variety of problems, including sedimentation, diffusion and rheology, and it aims to provide the same level of understanding for multiphase particulate systems as molecular dynamics does for statistical properties of matter. For rigid particles of radius suspended in an incompressible Newtonian fluid of viscosity and density , the motion of the fluid is governed by the Navier–Stokes equations, while the motion of the particles is described by the coupled equation of motion:
Fluid animation refers to computer graphics techniques for generating realistic animations of fluids such as water and smoke. Fluid animations are typically focused on emulating the qualitative visual behavior of a fluid, with less emphasis placed on rigorously correct physical results, although they often still rely on approximate solutions to the Euler equations or Navier–Stokes equations that govern real fluid physics. Fluid animation can be performed with different levels of complexity, ranging from time-consuming, high-quality animations for films, or visual effects, to simple and fast animations for real-time animations like computer games.
In computational fluid dynamics, the volume of fluid (VOF) method is a family of free-surface modelling techniques, i.e. numerical techniques for tracking and locating the free surface. They belong to the class of Eulerian methods which are characterized by a mesh that is either stationary or is moving in a certain prescribed manner to accommodate the evolving shape of the interface. As such, VOF methods are advection schemes capturing the shape and position of the interface, but are not standalone flow solving algorithms. The Navier–Stokes equations describing the motion of the flow have to be solved separately.
In computational fluid dynamics, the immersed boundary method originally referred to an approach developed by Charles Peskin in 1972 to simulate fluid-structure (fiber) interactions. Treating the coupling of the structure deformations and the fluid flow poses a number of challenging problems for numerical simulations. In the immersed boundary method the fluid is represented in an Eulerian coordinate system and the structure is represented in Lagrangian coordinates. For Newtonian fluids governed by the Navier–Stokes equations, the fluid equations are
The moving particle semi-implicit (MPS) method is a computational method for the simulation of incompressible free surface flows. It is a macroscopic, deterministic particle method developed by Koshizuka and Oka (1996).
The multiphase particle-in-cell method (MP-PIC) is a numerical method for modeling particle-fluid and particle-particle interactions in a computational fluid dynamics (CFD) calculation. The MP-PIC method achieves greater stability than its particle-in-cell predecessor by simultaneously treating the solid particles as computational particles and as a continuum. In the MP-PIC approach, the particle properties are mapped from the Lagrangian coordinates to an Eulerian grid through the use of interpolation functions. After evaluation of the continuum derivative terms, the particle properties are mapped back to the individual particles. This method has proven to be stable in dense particle flows, computationally efficient, and physically accurate. This has allowed the MP-PIC method to be used as particle-flow solver for the simulation of industrial-scale chemical processes involving particle-fluid flows.
The viscous vortex domains (VVD) method is a mesh-free method of computational fluid dynamics for directly numerically solving 2D Navier-Stokes equations in Lagrange coordinates. It doesn't implement any turbulence model and free of arbitrary parameters. The main idea of this method is to present vorticity field with discrete regions (domains), which travel with diffusive velocity relatively to fluid and conserve their circulation. The same approach was used in Diffusion Velocity method of Ogami and Akamatsu, but VVD uses other discrete formulas
In computational fluid dynamics, the Stochastic Eulerian Lagrangian Method (SELM) is an approach to capture essential features of fluid-structure interactions subject to thermal fluctuations while introducing approximations which facilitate analysis and the development of tractable numerical methods. SELM is a hybrid approach utilizing an Eulerian description for the continuum hydrodynamic fields and a Lagrangian description for elastic structures. Thermal fluctuations are introduced through stochastic driving fields. Approaches also are introduced for the stochastic fields of the SPDEs to obtain numerical methods taking into account the numerical discretization artifacts to maintain statistical principles, such as fluctuation-dissipation balance and other properties in statistical mechanics.
Gerris is computer software in the field of computational fluid dynamics (CFD). Gerris was released as free and open-source software, subject to the requirements of the GNU General Public License (GPL), version 2 or any later.
Thomas Yizhao Hou is the Charles Lee Powell Professor of Applied and Computational Mathematics in the Department of Computing and Mathematical Sciences at the California Institute of Technology. He is known for his work in numerical analysis and mathematical analysis.
The finite point method (FPM) is a meshfree method for solving partial differential equations (PDEs) on scattered distributions of points. The FPM was proposed in the mid-nineties in, and with the purpose to facilitate the solution of problems involving complex geometries, free surfaces, moving boundaries and adaptive refinement. Since then, the FPM has evolved considerably, showing satisfactory accuracy and capabilities to deal with different fluid and solid mechanics problems.
In geology, numerical modeling is a widely applied technique to tackle complex geological problems by computational simulation of geological scenarios.
Momentum mapping format is a key technique in the Material Point Method (MPM) for transferring physical quantities such as momentum, mass, and stress between a material point and a background grid.