Projection method (fluid dynamics)

Last updated

In computational fluid dynamics, the projection method, also called Chorin's projection method, is an effective means of numerically solving time-dependent incompressible fluid-flow problems. It was originally introduced by Alexandre Chorin in 1967 [1] [2] as an efficient means of solving the incompressible Navier-Stokes equations. The key advantage of the projection method is that the computations of the velocity and the pressure fields are decoupled.

Contents

The algorithm

The algorithm of the projection method is based on the Helmholtz decomposition (sometimes called Helmholtz-Hodge decomposition) of any vector field into a solenoidal part and an irrotational part. Typically, the algorithm consists of two stages. In the first stage, an intermediate velocity that does not satisfy the incompressibility constraint is computed at each time step. In the second, the pressure is used to project the intermediate velocity onto a space of divergence-free velocity field to get the next update of velocity and pressure.

HelmholtzHodge decomposition

The theoretical background of projection type method is the decomposition theorem of Ladyzhenskaya sometimes referred to as HelmholtzHodge Decomposition or simply as Hodge decomposition. It states that the vector field defined on a simply connected domain can be uniquely decomposed into a divergence-free (solenoidal) part and an irrotational part . [3]

Thus,

since for some scalar function, . Taking the divergence of equation yields

This is a Poisson equation for the scalar function . If the vector field is known, the above equation can be solved for the scalar function and the divergence-free part of can be extracted using the relation

This is the essence of solenoidal projection method for solving incompressible NavierStokes equations.

Chorin's projection method

The incompressible Navier-Stokes equation (differential form of momentum equation) may be written as

In Chorin's original version of the projection method, one first computes an intermediate velocity, , explicitly using the momentum equation by ignoring the pressure gradient term:

where is the velocity at th time step. In the second half of the algorithm, the projection step, we correct the intermediate velocity to obtain the final solution of the time step :

One can rewrite this equation in the form of a time step as

to make clear that the algorithm is really just an operator splitting approach in which one considers the viscous forces (in the first half step) and the pressure forces (in the second half step) separately.

Computing the right-hand side of the second half step requires knowledge of the pressure, , at the time level. This is obtained by taking the divergence and requiring that , which is the divergence (continuity) condition, thereby deriving the following Poisson equation for ,

It is instructive to note that the equation written as

is the standard Hodge decomposition if boundary condition for on the domain boundary, are . In practice, this condition is responsible for the errors this method shows close to the boundary of the domain since the real pressure (i.e., the pressure in the exact solution of the Navier-Stokes equations) does not satisfy such boundary conditions.

For the explicit method, the boundary condition for in equation (1) is natural. If on , is prescribed, then the space of divergence-free vector fields will be orthogonal to the space of irrotational vector fields, and from equation (2) one has

The explicit treatment of the boundary condition may be circumvented by using a staggered grid and requiring that vanish at the pressure nodes that are adjacent to the boundaries.

A distinguishing feature of Chorin's projection method is that the velocity field is forced to satisfy a discrete continuity constraint at the end of each time step.

General method

Typically the projection method operates as a two-stage fractional step scheme, a method which uses multiple calculation steps for each numerical time-step. In many projection algorithms, the steps are split as follows:

  1. First the system is progressed in time to a mid-time-step position, solving the above transport equations for mass and momentum using a suitable advection method. This is denoted the predictor step.
  2. At this point an initial projection may be implemented such that the mid-time-step velocity field is enforced as divergence free.
  3. The corrector part of the algorithm is then progressed. These use the time-centred estimates of the velocity, density, etc. to form final time-step state.
  4. A final projection is then applied to enforce the divergence restraint on the velocity field. The system has now been fully updated to the new time.

Related Research Articles

Acoustic theory is a scientific field that relates to the description of sound waves. It derives from fluid dynamics. See acoustics for the engineering approach.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Potential flow</span> Velocity field as the gradient of a scalar function

In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity, i.e., for an inviscid fluid and with no vorticity present in the flow.

The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid. The governing equation is:

<span class="mw-page-title-main">Euler equations (fluid dynamics)</span> Set of quasilinear hyperbolic equations governing adiabatic and inviscid flow

In fluid dynamics, the Euler equations are a set of partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity.

In fluid mechanics, or more generally continuum mechanics, incompressible flow refers to a flow in which the material density of each fluid parcel — an infinitesimal volume that moves with the flow velocity — is time-invariant. An equivalent statement that implies incompressible flow is that the divergence of the flow velocity is zero.

In physics and mathematics, the Helmholtz decomposition theorem or the fundamental theorem of vector calculus states that any sufficiently smooth, rapidly decaying vector field in three dimensions can be resolved into the sum of an irrotational (curl-free) vector field and a solenoidal (divergence-free) vector field. It is named after Hermann von Helmholtz.

In fluid mechanics, the Taylor–Proudman theorem states that when a solid body is moved slowly within a fluid that is steadily rotated with a high angular velocity , the fluid velocity will be uniform along any line parallel to the axis of rotation. must be large compared to the movement of the solid body in order to make the Coriolis force large compared to the acceleration terms.

<span class="mw-page-title-main">Stokes flow</span> Type of fluid flow

Stokes flow, also named creeping flow or creeping motion, is a type of fluid flow where advective inertial forces are small compared with viscous forces. The Reynolds number is low, i.e. . This is a typical situation in flows where the fluid velocities are very slow, the viscosities are very large, or the length-scales of the flow are very small. Creeping flow was first studied to understand lubrication. In nature, this type of flow occurs in the swimming of microorganisms and sperm. In technology, it occurs in paint, MEMS devices, and in the flow of viscous polymers generally.

A velocity potential is a scalar potential used in potential flow theory. It was introduced by Joseph-Louis Lagrange in 1788.

In fluid mechanics, potential vorticity (PV) is a quantity which is proportional to the dot product of vorticity and stratification. This quantity, following a parcel of air or water, can only be changed by diabatic or frictional processes. It is a useful concept for understanding the generation of vorticity in cyclogenesis, especially along the polar front, and in analyzing flow in the ocean.

<span class="mw-page-title-main">Navier–Stokes existence and smoothness</span> Millennium Prize Problem

The Navier–Stokes existence and smoothness problem concerns the mathematical properties of solutions to the Navier–Stokes equations, a system of partial differential equations that describe the motion of a fluid in space. Solutions to the Navier–Stokes equations are used in many practical applications. However, theoretical understanding of the solutions to these equations is incomplete. In particular, solutions of the Navier–Stokes equations often include turbulence, which remains one of the greatest unsolved problems in physics, despite its immense importance in science and engineering.

In plasma physics, the Hasegawa–Mima equation, named after Akira Hasegawa and Kunioki Mima, is an equation that describes a certain regime of plasma, where the time scales are very fast, and the distance scale in the direction of the magnetic field is long. In particular the equation is useful for describing turbulence in some tokamaks. The equation was introduced in Hasegawa and Mima's paper submitted in 1977 to Physics of Fluids, where they compared it to the results of the ATC tokamak.

The derivation of the Navier–Stokes equations as well as their application and formulation for different families of fluids, is an important exercise in fluid dynamics with applications in mechanical engineering, physics, chemistry, heat transfer, and electrical engineering. A proof explaining the properties and bounds of the equations, such as Navier–Stokes existence and smoothness, is one of the important unsolved problems in mathematics.

Pressure-correction method is a class of methods used in computational fluid dynamics for numerically solving the Navier-Stokes equations normally for incompressible flows.

The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum.

In fluid dynamics, aerodynamic potential flow codes or panel codes are used to determine the fluid velocity, and subsequently the pressure distribution, on an object. This may be a simple two-dimensional object, such as a circle or wing, or it may be a three-dimensional vehicle.

The multiphase particle-in-cell method (MP-PIC) is a numerical method for modeling particle-fluid and particle-particle interactions in a computational fluid dynamics (CFD) calculation. The MP-PIC method achieves greater stability than its particle-in-cell predecessor by simultaneously treating the solid particles as computational particles and as a continuum. In the MP-PIC approach, the particle properties are mapped from the Lagrangian coordinates to an Eulerian grid through the use of interpolation functions. After evaluation of the continuum derivative terms, the particle properties are mapped back to the individual particles. This method has proven to be stable in dense particle flows, computationally efficient, and physically accurate. This has allowed the MP-PIC method to be used as particle-flow solver for the simulation of industrial-scale chemical processes involving particle-fluid flows.

The Leray projection, named after Jean Leray, is a linear operator used in the theory of partial differential equations, specifically in the fields of fluid dynamics. Informally, it can be seen as the projection on the divergence-free vector fields. It is used in particular to eliminate both the pressure term and the divergence-free term in the Stokes equations and Navier–Stokes equations.

In physics, the first law of thermodynamics is an expression of the conservation of total energy of a system. The increase of the energy of a system is equal to the sum of work done on the system and the heat added to that system:

References

  1. Chorin, A. J. (1967), "The numerical solution of the Navier-Stokes equations for an incompressible fluid" (PDF), Bull. Am. Math. Soc., 73 (6): 928–931, doi:10.1090/S0002-9904-1967-11853-6
  2. Chorin, A. J. (1968), "Numerical Solution of the Navier-Stokes Equations", Math. Comp., 22 (104): 745–762, doi: 10.1090/s0025-5718-1968-0242392-2
  3. Chorin, A. J.; J. E. Marsden (1993). A Mathematical Introduction to Fluid Mechanics (3rd ed.). Springer-Verlag. ISBN   0-387-97918-2.