Flat IP

Last updated

Flat IP architecture identifies devices using symbolic names instead of the hierarchical network layout commonly used with IP addresses. It can be referred to as Smart IP addresses. This form of internet protocol system is of interest to mobile broadband network operators.

Contents

Flat IP architecture

To address the need for real-time data applications delivered over mobile broadband networks, wireless operators are adopting flat IP network architectures. [1]

Key benefits of flat IP architectures include:
Some of the key players in recognizing these advantages include:
Key considerations of Flat IP Architectures for Mobile Networks include:

Advanced Base Stations: These integrate radio control, header compression, encryption, call admission control, and policy enforcement with IP/Ethernet interfaces. Base station routers aim to provide simpler, lower-latency 3GPP/2 networks. Notable players in this area are Alcatel-Lucent, Airvana, and Ubiquisys.

Direct Tunnel Architecture: This architecture is emerging as a viable evolution path, with all major vendors currently supporting it. Direct Tunnel Architecture bypasses the SGSN on the user plane. Nokia-Siemens's Internet High-Speed Packet Access ([IHSPA]) architecture further advances this concept by removing the RNC from the data path, thereby simplifying the architecture and reducing latencies even further. [3]

WiMax Access Services Network: This was the first standardized IP-centric mobile network architecture and established principles now being adopted across the industry. [4] Over time, HSPA and LTE networks have become the preferred technologies for most operators.

See also

Related Research Articles

<span class="mw-page-title-main">Enhanced Data rates for GSM Evolution</span> Digital mobile phone technology

Enhanced Data rates for GSM Evolution (EDGE), also known as 2.75G, Enhanced GPRS (EGPRS), IMT Single Carrier (IMT-SC), and Enhanced Data rates for Global Evolution, is a 2G digital mobile phone technology for data transmission. It is a subset of General Packet Radio Service (GPRS) on the GSM network and improves upon it offering speeds close to 3G technology, hence the name 2.75G.

<span class="mw-page-title-main">General Packet Radio Service</span> Packet oriented mobile data service on 2G and 3G

General Packet Radio Service (GPRS), also called 2.5G, is a mobile data standard on the 2G cellular communication network's global system for mobile communications (GSM). Networks and mobile devices with GPRS started to roll out around the year 2001. At the time of introduction it offered for the first time seamless mobile data transmission using packet data for an "always-on" connection, providing improved Internet access for web, email, WAP services, and Multimedia Messaging Service (MMS).

<span class="mw-page-title-main">WiMAX</span> Wireless broadband standard

Worldwide Interoperability for Microwave Access (WiMAX) is a family of wireless broadband communication standards based on the IEEE 802.16 set of standards, which provide physical layer (PHY) and media access control (MAC) options.

4G is the fourth generation of broadband cellular network technology, succeeding 3G and preceding 5G. A 4G system must provide capabilities defined by ITU in IMT Advanced. Potential and current applications include amended mobile web access, IP telephony, gaming services, high-definition mobile TV, video conferencing, and 3D television.

<span class="mw-page-title-main">Evolution-Data Optimized</span> Telecommunications standard for the wireless transmission of data through radio signals

Evolution-Data Optimized is a telecommunications standard for the wireless transmission of data through radio signals, typically for broadband Internet access. EV-DO is an evolution of the CDMA2000 (IS-2000) standard which supports high data rates and can be deployed alongside a wireless carrier's voice services. It uses advanced multiplexing techniques including code-division multiple access (CDMA) as well as time-division multiplexing (TDM) to maximize throughput. It is a part of the CDMA2000 family of standards and has been adopted by many mobile phone service providers around the world particularly those previously employing CDMA networks. It is also used on the Globalstar satellite phone network.

Mobile IP is an Internet Engineering Task Force (IETF) standard communications protocol that is designed to allow mobile device users to move from one network to another while maintaining a permanent IP address. Mobile IP for IPv4 is described in IETF RFC 5944, and extensions are defined in IETF RFC 4721. Mobile IPv6, the IP mobility implementation for the next generation of the Internet Protocol, IPv6, is described in RFC 6275.

The IP Multimedia Subsystem or IP Multimedia Core Network Subsystem (IMS) is a standardised architectural framework for delivering IP multimedia services. Historically, mobile phones have provided voice call services over a circuit-switched-style network, rather than strictly over an IP packet-switched network. Various voice over IP technologies are available on smartphones; IMS provides a standard protocol across vendors.

<span class="mw-page-title-main">Orthogonal frequency-division multiple access</span> Multi-user version of OFDM digital modulation

Orthogonal frequency-division multiple access (OFDMA) is a multi-user version of the popular orthogonal frequency-division multiplexing (OFDM) digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users. This allows simultaneous low-data-rate transmission from several users.

<span class="mw-page-title-main">Wi-Fi calling</span> Protocol that extends mobile voice, data and multimedia applications over IP networks

Wi-Fi calling, also called VoWiFi, refers to mobile phone voice calls and data that are made over IP networks using Wi-Fi, instead of the cell towers provided by cellular networks. Using this feature, compatible handsets are able to route regular cellular calls through a wireless LAN (Wi-Fi) network with broadband Internet, while seamlessly change connections between the two where necessary. This feature makes use of the Generic Access Network (GAN) protocol, also known as Unlicensed Mobile Access (UMA).

In a hierarchical telecommunications network, the backhaul portion of the network comprises the intermediate links between the core network, or backbone network, and the small subnetworks at the edge of the network.

<span class="mw-page-title-main">Femtocell</span> Small, low-power cellular base station

In telecommunications, a femtocell is a small, low-power cellular base station, typically designed for use in a home or small business. A broader term which is more widespread in the industry is small cell, with femtocell as a subset. It typically connects to the service provider's network via the Internet through a wired broadband link ; current designs typically support four to eight simultaneously active mobile phones in a residential setting depending on version number and femtocell hardware, and eight to sixteen mobile phones in enterprise settings. A femtocell allows service providers to extend service coverage indoors or at the cell edge, especially where access would otherwise be limited or unavailable. Although much attention is focused on WCDMA, the concept is applicable to all standards, including GSM, CDMA2000, TD-SCDMA, WiMAX and LTE solutions.

<span class="mw-page-title-main">High Speed Packet Access</span> Communications protocols

High Speed Packet Access (HSPA) is an amalgamation of two mobile protocols—High Speed Downlink Packet Access (HSDPA) and High Speed Uplink Packet Access (HSUPA)—that extends and improves the performance of existing 3G mobile telecommunication networks using the WCDMA protocols. A further-improved 3GPP standard called Evolved High Speed Packet Access was released late in 2008, with subsequent worldwide adoption beginning in 2010. The newer standard allows bit rates to reach as high as 337 Mbit/s in the downlink and 34 Mbit/s in the uplink; however, these speeds are rarely achieved in practice.

A wide variety of different wireless data technologies exist, some in direct competition with one another, others designed for specific applications. Wireless technologies can be evaluated by a variety of different metrics of which some are described in this entry.

Media Independent Handover (MIH) is a standard being developed by IEEE 802.21 to enable the handover of IP sessions from one layer 2 access technology to another, to achieve mobility of end user devices (MIH).

<span class="mw-page-title-main">Evolved High Speed Packet Access</span> Technical standard

Evolved High Speed Packet Access, HSPA+, HSPA (Plus) or HSPAP, is a technical standard for wireless broadband telecommunication. It is the second phase of HSPA which has been introduced in 3GPP release 7 and being further improved in later 3GPP releases. HSPA+ can achieve data rates of up to 42.2 Mbit/s. It introduces antenna array technologies such as beamforming and multiple-input multiple-output communications (MIMO). Beamforming focuses the transmitted power of an antenna in a beam toward the user's direction. MIMO uses multiple antennas on the sending and receiving side. Further releases of the standard have introduced dual carrier operation, i.e. the simultaneous use of two 5 MHz carriers. HSPA+ is an evolution of HSPA that upgrades the existing 3G network and provides a method for telecom operators to migrate towards 4G speeds that are more comparable to the initially available speeds of newer LTE networks without deploying a new radio interface. HSPA+ should not be confused with LTE though, which uses an air interface based on orthogonal frequency-division modulation and multiple access.

The 3GPP has defined the Voice Call Continuity (VCC) specifications in order to describe how a voice call can be persisted, as a mobile phone moves between circuit switched and packet switched radio domains.

System Architecture Evolution (SAE) is the core network architecture of mobile communications protocol group 3GPP's LTE wireless communication standard.

Proxy Mobile IPv6 is a network-based mobility management protocol standardized by IETF and is specified in RFC 5213. It is a protocol for building a common and access technology independent of mobile core networks, accommodating various access technologies such as WiMAX, 3GPP, 3GPP2 and WLAN based access architectures. Proxy Mobile IPv6 is the only network-based mobility management protocol standardized by IETF.

In telecommunications, long-term evolution (LTE) is a standard for wireless broadband communication for mobile devices and data terminals, based on the GSM/EDGE and UMTS/HSPA standards. It improves on those standards' capacity and speed by using a different radio interface and core network improvements. LTE is the upgrade path for carriers with both GSM/UMTS networks and CDMA2000 networks. Because LTE frequencies and bands differ from country to country, only multi-band phones can use LTE in all countries where it is supported.

Access network discovery and selection function (ANDSF) is an entity within an evolved packet core (EPC) of the system architecture evolution (SAE) for 3GPP compliant mobile networks. The purpose of the ANDSF is to assist user equipment (UE) to discover non-3GPP access networks – such as Wi-Fi or WIMAX – that can be used for data communications in addition to 3GPP access networks and to provide the UE with rules policing the connection to these networks.

References

  1. "The 5th Generation Mobile Wireless Networks- Key Concepts, Network Architecture and Challenges".
  2. Forum, WiMAX. "WiMAX Forum | AeroMACS, WiGRID, and WiMAX Advanced Technologies". www.wimaxforum.org. Retrieved 2024-09-09.
  3. Archived July 22, 2012, at the Wayback Machine
  4. Brown, Gabriel (July 2, 2007). "Flat Is Back: Toward the All-IP Mobile Network". www.lightreading.com. Retrieved July 16, 2024.{{cite web}}: CS1 maint: url-status (link)