Foliose lichen

Last updated
Flavoparmelia caperata, a species of foliose lichen, on a branch of a tree Flavoparmelia caperata - lichen - Caperatflechte.jpg
Flavoparmelia caperata , a species of foliose lichen, on a branch of a tree
Cross section diagram of foliose lichen with layers: 1. Thick layers of hyphae, called the cortex 2. Green algae 3. Loosely packed hyphae 4. Anchoring hyphae called rhizines. Lichen Cross Section Diagram.svg
Cross section diagram of foliose lichen with layers: 1. Thick layers of hyphae, called the cortex 2. Green algae 3. Loosely packed hyphae 4. Anchoring hyphae called rhizines.

A foliose lichen is a lichen with flat, leaf-like lobes , which are generally not firmly bonded to the substrate on which it grows. It is one of the three most common growth forms of lichens. It typically has distinct upper and lower surfaces, each of which is usually covered with a cortex; some, however, lack a lower cortex. [1] [2] The photobiont layer lies just below the upper cortex. [2] Where present, the lower cortex is usually dark (sometimes even black), but occasionally white. [2] Foliose lichens are attached to their substrate either by hyphae extending from the cortex or medulla , or by root-like structures called rhizines . [3] The latter, which are found only in foliose lichens, come in a variety of shapes, the specifics of which can aid in species identification. [4] Some foliose lichens attach only at a single stout peg called a holdfast , typically located near the lichen's centre. Lichens with this structure are called "umbilicate". [3] In general, medium to large epiphytic foliose lichens are moderately sensitive to air pollution, while smaller or ground-dwelling foliose lichens are more tolerant. [5] The term "foliose" derives from the Latin word foliosus, meaning "leafy". [6]

Contents

Pollution

A direct correlation exists between pollution and the abundance and distribution of lichen. Foliose lichens are extremely sensitive to sulphur dioxide, which is a by-product of atmospheric pollution. Sulphur dioxide reacts with the chlorophyll in lichen, which produces phaeophytin and magnesium ions. When this reaction occurs in plants the lichen will then have less chlorophyll, causing a decrease in respiration that eventually kills the lichen. [7]

Weathering of rocks

Minerals in rocks can be weathered by the growth of lichens on exposed rock surfaces. This can be attributed to both physical and chemical processes. Lichen can chemically weather minerals such as calcite by producing organic acids like oxalic acid. This reacts with minerals in the rock, dissolving them and weakening the rock. As a result of this many rocks that have or once had lichen growth exhibit extensive surface corrosion. By-products of this weathering are poorly ordered iron oxides and amorphous alumino-silica gels, the neoformation of crystalline metal oxalates and secondary clay minerals. Lichen physically weather rocks by penetrating the rock's small crevasses with their rhizoids. The expansion and contraction of the roots causes smaller cracks to expand. [8]

These combined processes – of chemical and physical weathering – also serve to deteriorate asphalt shingles, with foliose lichen byproducts dissolving the limestone (calcium carbonate) used as filler and their rhizoids expanding cracks which develop in the shingles over time.

Reproduction

The reproduction of foliose lichen can occur either asexually or sexually. The sexual reproduction requires both a fungal and photosynthetic partner. The photobiont once in symbionce with its fungal partner will not produce recognisable reproductive structures therefore it is up to the fungal partner to continue reproduction for the lichen. In order for lichen reproduction to take place the fungal partner must produce millions of germinating spores which fuse to form a zygote that must then also find a compatible photobiont. This photobiont will fuse with the zygote and live within the fungi creating a lichen. The fungal partner in most foliose lichen are ascomytes with spores called ascomata. The fruiting bodies of lichen typically make up one of two shapes. Apothecia which look like disk or cup shaped and produce their spores on their upper surface. And perithecia which are shaped like flasks that enclose a spore producing layer with a hole at the top ( Brodo, Sharnoff, and Sharnoff). Since sexual reproduction is inefficient, lichen will reproduce asexually by vegetative reproduction when possible. Foliose lichen use isidia which are cylindrical finger like protuberances from the upper cortex in which algal and fungal tissue is incorporated into. They are easily broken off and transported by wind where they will relocate and propagate forming a new lichen. [9]

Related Research Articles

<span class="mw-page-title-main">Lichen</span> Symbiosis of fungi with algae or cyanobacteria

A lichen is a composite organism that arises from algae or cyanobacteria living among filaments of multiple fungi species in a mutualistic relationship. Lichens are important actors in nutrient cycling and act as producers which many higher trophic feeders feed on, such as reindeer, gastropods, nematodes, mites, and springtails. Lichens have properties different from those of their component organisms. They come in many colors, sizes, and forms and are sometimes plant-like, but are not plants. They may have tiny, leafless branches (fruticose); flat leaf-like structures (foliose); grow crust-like, adhering tightly to a surface (substrate) like a thick coat of paint (crustose); have a powder-like appearance (leprose); or other growth forms.

<i>Xanthoria parietina</i> Species of lichen

Xanthoria parietina is a foliose lichen in the family Teloschistaceae. It has wide distribution, and many common names such as common orange lichen, yellow scale, maritime sunburst lichen and shore lichen. It can be found near the shore on rocks or walls, and also on inland rocks, walls, or tree bark. It was chosen as a model organism for genomic sequencing by the US Department of Energy Joint Genome Institute (JGI).

<span class="mw-page-title-main">Prothallus</span> Gametophyte stage in the fern life cycle

A prothallus, or prothallium, is usually the gametophyte stage in the life of a fern or other pteridophyte. Occasionally the term is also used to describe the young gametophyte of a liverwort or peat moss as well. In lichens it refers to the region of the thallus that is free of algae.

<i>Flavoparmelia caperata</i> Species of lichen

Flavoparmelia caperata, the common greenshield lichen, is a foliose lichen that grows on the bark of trees, and occasionally on rock.

<i>Flavoparmelia baltimorensis</i> Species of fungus

Flavoparmelia baltimorensis, the rock greenshield lichen, is a medium to large foliose lichen with a yellow green upper thallus surface when dry; its lobes are rounded without pseudocyphellae; and the upper surface is covered with globose, pustule-like growths resembling isidia. The lower surface is black with a narrow brown zone at the margins.

<i>Trebouxia</i> Genus of algae

Trebouxia is a unicellular green alga. It is a photosynthetic organism that can exist in almost all habitats found in polar, tropical, and temperate regions. It can either exist in a symbiotic relationship with fungi in the form of lichen or it can survive independently as a free-living organism alone or in colonies. Trebouxia is the most common photobiont in extant lichens. It is a primary producer of marine, freshwater and terrestrial ecosystems. It uses carotenoids and chlorophyll a and b to harvest energy from the sun and provide nutrients to various animals and insects.

<i>Lobaria pulmonaria</i> Species of lichen

Lobaria pulmonaria is a large epiphytic lichen consisting of an ascomycete fungus and a green algal partner living together in a symbiotic relationship with a cyanobacterium—a symbiosis involving members of three kingdoms of organisms. Commonly known by various names like tree lungwort, lung lichen, lung moss, lungwort lichen, oak lungs or oak lungwort, it is sensitive to air pollution and is also harmed by habitat loss and changes in forestry practices. Its population has declined across Europe and L. pulmonaria is considered endangered in many lowland areas. The species has a history of use in herbal medicines, and recent research has corroborated some medicinal properties of lichen extracts.

<i>Flavoparmelia</i> Genus of fungi

Flavoparmelia is a genus of foliose lichens in the family Parmeliaceae. Because of their appearance, they are commonly known as greenshield lichens. The widely distributed genus contains 32 species. It was circumscribed by American lichenologist Mason Hale in 1986 to contain 17 former Pseudoparmelia species with broad lobes, usnic acid in the cortex, and isolichenan in the cell walls.

<i>Nephroma</i> Genus of lichens in the family Parmeliaceae

Nephroma is a genus of medium to large foliose lichens. The genus has a widespread distribution. They are sometimes called kidney lichens, named after the characteristic kidney-shaped apothecia that they produce on the lower surface of their lobe tips, which often curl upwards and thus are visible from above. Sterile specimens that do not have apothecia can look somewhat like Melanelia, Peltigera, Platismatia, or Asahinea. Most species grow either on mossy ground or rocks, or on trees.

<span class="mw-page-title-main">Cephalodium</span> Morphological structure found in some lichens

A cephalodium (pl. cephalodia) is a small gall-like structure found in some lichens. They occur only lichens which contain both cyanobacterial and green algal partners. Cephalodia can occur within the tissues of the lichen, or on its upper or lower surface. Lichens with cephalodia can fix nitrogen, and may be an important contributor of nitrogen to the ecosystem.

<i>Esslingeriana</i> Single-species genus of lichen

Esslingeriana is a fungal genus in the family Parmeliaceae. The genus is monotypic, containing the single foliose lichen species Esslingeriana idahoensis, commonly known as the tinted rag lichen. It is found in northwestern North America.

<span class="mw-page-title-main">Fruticose lichen</span> Form of lichen

A fruticose lichen is a form of lichen fungi that is characterized by a coral-like shrubby or bushy growth structure. It is formed from a symbiotic relationship of a photobiont such as green algae or less commonly cyanobacteria and one, two or more mycobionts. Fruticose lichens are not a monophyletic and holophyletic lineage, but is a form encountered in many classes. Fruticose lichens have a complex vegetation structure, and are characterized by an ascending, bushy or pendulous appearance. As with other lichens, many fruticose lichens can endure high degrees of desiccation. They grow slowly and often occur in habitats such as on tree barks, on rock surfaces and on soils in the Arctic and mountain regions.

<span class="mw-page-title-main">Crustose lichen</span> Growth form of lichen as a continuously adherent crust

Crustose lichens are lichens that form a crust which strongly adheres to the substrate, making separation from the substrate impossible without destruction. The basic structure of crustose lichens consists of a cortex layer, an algal layer, and a medulla. The upper cortex layer is differentiated and is usually pigmented. The algal layer lies beneath the cortex. The medulla fastens the lichen to the substrate and is made up of fungal hyphae. The surface of crustose lichens is characterized by branching cracks that periodically close in response to climatic variations such as alternate wetting and drying regimes.

<span class="mw-page-title-main">Lichen growth forms</span> Gross morphological classification

Lichens are symbiotic organisms made up of multiple species: a fungus, one or more photobionts and sometimes a yeast. They are regularly grouped by their external appearance – a characteristic known as their growth form. This form, which is based on the appearance of vegetative part of the lichen, varies depending on the species and the environmental conditions it faces. Those who study lichens (lichenologists) have described a dozen of these forms: areolate, byssoid, calicioid, cladoniform, crustose, filamentous, foliose, fruticose, gelatinous, leprose, placoidioid and squamulose. Traditionally, crustose (flat), foliose (leafy) and fruticose (shrubby) are considered to be the three main forms. In addition to these more formalised, traditional growth types, there are a handful of informal types named for their resemblance to the lichens of specific genera. These include alectorioid, catapyrenioid, cetrarioid, hypogymnioid, parmelioid and usneoid.

<span class="mw-page-title-main">Lichen morphology</span>

Lichen morphology describes the external appearance and structures of a lichen. These can vary considerably from species to species. Lichen growth forms are used to group lichens by "vegetative" thallus types, and forms of "non-vegetative" reproductive parts. Some lichen thalli have the aspect of leaves ; others cover the substrate like a crust, others such as the genus Ramalina adopt shrubby forms, and there are gelatinous lichens such as the genus Collema.

<i>Physcia caesia</i> Blue-gray foliose lichen found throughout much of the world

Physcia caesia, known colloquially as blue-gray rosette lichen and powder-back lichen, is a species of foliose lichenized fungus. First described by Georg Franz Hoffmann in 1784, it is common across much of Europe, North America and New Zealand, and more patchily distributed in South America, Asia, Australia and Antarctica. There are 2 subspecies: P. c. caesia and P. c. ventosa, as well as a number of distinct forms and varieties. Molecular studies suggest that the species as currently defined may be polyphyletic. It is typically pale gray shading to darker gray in the center, and grows in a small rosette, usually some 2–3 cm (0.79–1.18 in) across at maturity. It only rarely has apothecia, instead reproducing most often vegetatively via soredia, which are piled in round blue-gray mounds across the thallus's upper surface. It grows most often on rock—principally calcareous, but also basaltic and siliceous—and also occurs on bone, bark and soil. It is nitrophilic and is particularly common on substrates where birds perch.

<i>Parmotrema rampoddense</i> Species of lichen

Parmotrema rampoddense, commonly known as the long-whiskered ruffle lichen, is a species of foliose lichen in the family Parmeliaceae. It is widely distributed in tropical regions and grows on the bark of oak and palm trees.

<i>Punctelia guanchica</i> Species of lichen in the family Parmeliaceae

Punctelia guanchica is a species of foliose lichen in the family Parmeliaceae that is only known from the Canary Islands. It is similar in appearance and morphology to the North American Punctelia rudecta, and was historically misidentified as that species until molecular phylogenetic evidence showed it to be a distinct species. It differs in having thicker isidia that develop from the centre of the pseudocyphellae, and it mainly grows on rocks.

<span class="mw-page-title-main">Outline of lichens</span> Overview of and topical guide to lichens

The following outline provides an overview of and topical guide to lichens.

References

  1. Baron 1999, p. 27.
  2. 1 2 3 Brodo, Sharnoff & Sharnoff 2001, p. 13.
  3. 1 2 Brodo, Sharnoff & Sharnoff 2001, p. 14.
  4. Brodo, Sharnoff & Sharnoff 2001, pp. 13–14.
  5. United States Forest Service.
  6. Ulloa & Hanlin 2012, p. 229.
  7. Hill, D. J. (1971-09-01). "Experimental Study of the Effect of Sulphite on Lichens with Reference to Atmospheric Pollution". New Phytologist. 70 (5): 831–836. doi: 10.1111/j.1469-8137.1971.tb02583.x . ISSN   0028-646X.
  8. (Chen, Jie, Hans P. Blume, and Lothar Beyer)
  9. BOWLER, P. A.; RUNDEL, P. W. (1975-06-01). "Reproductive strategies in lichens". Botanical Journal of the Linnean Society. 70 (4): 325–340. doi:10.1111/j.1095-8339.1975.tb01653.x. ISSN   0024-4074.

Sources