Food biodiversity

Last updated

Food biodiversity is defined as "the diversity of plants, animals and other organisms used for food, covering the genetic resources within species, between species and provided by ecosystems." [1]

Contents

Food biodiversity can be considered from two main perspectives: production and consumption. From a consumption perspective, food biodiversity describes the diversity of foods in human diets and their contribution to dietary diversity, cultural identity and good nutrition. Production of food biodiversity looks at the thousands of food products, such as fruits, nuts, vegetables, meat and condiments sourced from agriculture and from the wild (e.g. forests, uncultivated fields, water bodies). Food biodiversity covers the diversity between species, for example different animal and crop species, including those considered neglected and underutilized species. Food biodiversity also comprises the diversity within species, for example different varieties of fruit and vegetables, or different breeds of animals.

Food diversity, diet diversity nutritional diversity, are also terms used in the new diet culture spawned by Brandon Eisler, in the study known as Nutritional Diversity. [2]

Consumption of food biodiversity

Food biodiversity in consumption

Promoting diversity of foods and species consumed in human diets, in particular, has potential co-benefits for public health and sustainable food systems perspective. Food biodiversity provides necessary nutrients for quality diets and is an essential part of local food systems, cultures, and food security. From a conservation point of view, diets based on a wide variety of species place less pressure on a single species. According to the FAO, 75% of the world's food comes from 12 plant species and five from animals. [3]

Effects on nutrition and health

A method of measurement for dietary diversity is the Household Dietary Diversity Score (HDDS). HDDS sums up the number of food groups digested in a day. [4]

Nutritionally, diversity in food is associated with higher micronutrient adequacy of diets. [5] In some cases, diverse diets have been proven to have benefits on one's health. For instance, the introduction of a wide variety of foods and food allergens during the first year of life can lead to a heightened intake of central nutrients and contribute to positive changes in the structure and function of the gut microbiome. [6] The diversification of species distributes quantities of micronutrients, macronutrients, and calories to the human diet. Among micronutrients, the nutrients for humans that are imperative to survive are A, eight types of B vitamins, C, D, E, and K. Their functions range from fighting infections, strengthening bones, healing wounds, and regulating hormones. [7] When species that provide superior macro and micronutrient densities are consumed less compared to more commonly consumed species, humans don’t achieve nearly the same benefits. For instance, rice and wheat represent staple foods in most cultures; however, teff and minor millets have more significant concentrations of protein, fat, and iron. [8]

Considering the profound impact food biodiversity has on health, food varieties can have potential risks.[ editorializing ] Wild foods (fish, plants, tree foods, wild meat, insects and fungi) serve as a crucial source of dietary diversity and essential micronutrients; especially in rural communities, foods can occasionally pose health and food safety risks. Additionally, plants and animals carry diseases that are anthropogenically passed or are zoonotic. In the U.S., there are 31 known pathogens, of the known pathogens 9.4 million people become ill from food-borne illness, 55,961 people are hospitalized from illness, and 1,351 deaths. [9] On a global scale, the decline in genetic diversity weakens the resilience of food systems, leaving them vulnerable to various challenges, encompassing pests, pathogens, and severe weather. This poses a significant risk to global food security. [10] Furthermore, food biodiversity, as measured by the absolute number of biological species in the usual diet, was negatively associated with the total mortality rate and cause-specific deaths due to cancer, heart disease, respiratory disease, and digestive disease among ~450,000 adults from nine European countries. [11]

History

Food biodiversity in the Neolithic era represented a shift from hunting and scavenging to agriculture where people started to herding animals and cultivating plants. These tactics led to the production of things like wheat, barley, dogwood fruits, grapes, and hazelnuts. [12] The Green Revolution represented the beginning of a new revolution and modernization. The beginning of the Green Revolution created the development of large yields of diversity in specific species. This resulted in new strains of rice and wheat and an increased food supply from the 1940s to the 1960s, but consequently led to the reduction of land used in agriculture. Early techniques utilized pesticides and fertilizers to gain productivity. The approaches of modernization led to techniques used today to increase food biodiversity within a single species. [13] The colonization and trade amongst resources pioneered the future of food diversity in diets. From a food biodiversity point of view, the Columbian Exchange represented the movement of species and ideas from the Old World to the New World. Foods like potato variety, maize, and cassava were among a few species introduced. The event was an early result of the globalization of food where the sharing of knowledge about food was shared. [12]

Impacts on food biodiversity

Role of biodiversity in production systems

Conservation and management of broad-based genetic diversity within the domesticated species have improved agricultural production for 10,000 years. However, diverse natural populations have provided food and other products for much longer. High biodiversity can maximize production levels, which are sustained through the beneficial impact of ecosystem services for agricultural, modified, and natural ecosystems. Conversely, reliance on a narrow portfolio of crops or crop varieties can jeopardize food production systems. This is illustrated by the Great Famine of Ireland. Potatoes were introduced into Ireland from the New World in about 1600, and they became the major food source of most Irish people. The wind-borne Potato blight fungus spread throughout the country In 1845-1847 and caused almost complete failure of the potato crop. It is estimated that 1 million people died of starvation, cholera, and typhoid. [14]

Effects on climate change

Human food biodiversity between species is put at risk when there are severe alterations to the climates surrounding crops. Extreme or abnormal weather events can cause unfavorable effects on crop yields, poor communities, rural farmers, and food sellers. Due to these events, it becomes increasingly difficult for poor populations to absorb global commodity price changes. After droughts in Russia and China, and floods in Australia, India, Pakistan, and Europe in (time) the World Bank in 2011 concluded that 44 million people returned to poverty. However, when crops are produced in biodiverse multi-functional landscapes, farmers can accommodate changing conditions. [15] In 2010-12, above-average heat temperatures caused premature budding of cherries and lower yields of corn across the U.S. Corn Belt. [16] Since the U.S. Corn Belt makes up a third of the world's global supply, climate prevention tactics protect the plant from future damaging catastrophes. [17]

Effects of technology and agricultural practices

Crop diversification practices and technology are being used to bring safer practices, more food diversity, and richness to food biodiversity. Depending on the geographic region, the protection of food biodiversity includes practice such as agricultural practices like sustainable agriculture, organic agriculture permaculture, conservation agriculture, agroecology, agroforestry, sustainable soil management, sustainable forest management, agroforestry, diversification of aquaculture, and ecosystem approach to fisheries and ecosystem restoration. Of 91 countries 81% practice these behaviors. [18] For example, inventory management techniques are used in determining the rate of consumption, and 78% of studies indicate that agroecological practices provide beneficial outcomes for those in low and middle-income countries. Agro-ecological practice creates comprehensive strategies integrating ecological, health, social, and economic factors into planning and executing agricultural and food systems. [19] Biotechnology allows farmers to grow crops of desired traits that give plant species biological advantages. These advantages are immunity to diseases, tolerance to drought, heat, cold or salinity, flavor enhancement, and superior growth traits. [20] The Advantages of biotechnology have gone towards less prosperous areas to create better livelihoods. Vietnam farmers have gained an extra income stretching from $6.85 to $12.55 for each additional dollar invested in biotech seeds compared to conventional seeds. [21]

Effects of global trade

Global trade allows people access to a wider variety of foods from different regions and climates, giving them more complex and balanced diets. The global trade model can be used to reflect the impact of trade on food concentrations and nutrition security. [22] Food biodiversity plays a critical role in the livelihood of individual countries. Trade is reliant on quality, demand, cost, and if the food is a staple food. Bhutan is an example of a country whose landscape provides a wide array of nutritional diversity. The nation is made up of 40 species of wild vegetables and 350 species of mushrooms used for food and as a profitable source of revenue. [8] The UNCDAT map 1 represents different basic food needs in countries by calculating the amount of trade balance divided by the total imports. [23] The map[ which? ] indicates that the concentrations of foods needed are different globally because import and export frequencies vary.

Ecosystem services

A wide range of biologically diverse populations in natural ecosystems and in/near agricultural ecosystems maintain essential ecological functions critical for food production. Such populations contribute positively to, for example, nutrient cycling, decomposition of organic matter, crusted or degraded soil rehabilitation, pest and disease regulation, water quality maintenance, and pollination. Maintaining species diversity while building on and enhancing ecosystem functions reduces external input requirements by increasing nutrient availability, improving water use, and soil structure, and controlling pests. [24] Heirloom rice varieties in the Philippines' Cordillera Autonomous region hold deep cultural, spiritual, and historical value, showcasing the potential of food biodiversity in preserving cultural heritage. [25]

Traits

Genetic diversity within food species is allows for a wide range of minerals, vitamins, and resistance, creating various benefits. For example:

See also

Related Research Articles

<span class="mw-page-title-main">Agriculture</span> Cultivation of plants and animals to provide useful products

Agriculture encompasses crop and livestock production, aquaculture, and forestry for food and non-food products. Agriculture was a key factor in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that enabled people to live in cities. While humans started gathering grains at least 105,000 years ago, nascent farmers only began planting them around 11,500 years ago. Sheep, goats, pigs, and cattle were domesticated around 10,000 years ago. Plants were independently cultivated in at least 11 regions of the world. In the 20th century, industrial agriculture based on large-scale monocultures came to dominate agricultural output.

A nutrient is a substance used by an organism to survive, grow and reproduce. The requirement for dietary nutrient intake applies to animals, plants, fungi and protists. Nutrients can be incorporated into cells for metabolic purposes or excreted by cells to create non-cellular structures such as hair, scales, feathers, or exoskeletons. Some nutrients can be metabolically converted into smaller molecules in the process of releasing energy such as for carbohydrates, lipids, proteins and fermentation products leading to end-products of water and carbon dioxide. All organisms require water. Essential nutrients for animals are the energy sources, some of the amino acids that are combined to create proteins, a subset of fatty acids, vitamins and certain minerals. Plants require more diverse minerals absorbed through roots, plus carbon dioxide and oxygen absorbed through leaves. Fungi live on dead or living organic matter and meet nutrient needs from their host.

<span class="mw-page-title-main">Economics of biodiversity</span> Economic importance of biodiversity

Biodiversity plays an essential role in the global economy. This includes its role in providing ecosystem services - the benefits that humans get from ecosystems. Biodiversity plays a major role in the productivity and functioning of ecosystems, affects their ability to provide ecosystem services. For example, biodiversity is a source of food, medication, and materials used in industry. Recreation and tourism are also examples of human economic activities that rely on these benefits. In 2018, the WWF Living Planet Report estimated that ecosystem services, underpinned by biodiversity, contributed US$125 trillion a year to the global economy.

<span class="mw-page-title-main">Human nutrition</span> Nutrients supporting human health

Human nutrition deals with the provision of essential nutrients in food that are necessary to support human life and good health. Poor nutrition is a chronic problem often linked to poverty, food security, or a poor understanding of nutritional requirements. Malnutrition and its consequences are large contributors to deaths, physical deformities, and disabilities worldwide. Good nutrition is necessary for children to grow physically and mentally, and for normal human biological development.

Vitamin deficiency is the condition of a long-term lack of a vitamin. When caused by not enough vitamin intake it is classified as a primary deficiency, whereas when due to an underlying disorder such as malabsorption it is called a secondary deficiency. An underlying disorder can have 2 main causes:

<span class="mw-page-title-main">Food security</span> Measure of the availability and accessibility of food

Food security is the state of having reliable access to a sufficient quantity of affordable, nutritious food. The availability of food for people of any class, gender or religion is another element of food security. Similarly, household food security is considered to exist when all the members of a family, at all times, have access to enough food for an active, healthy life. Individuals who are food-secure do not live in hunger or fear of starvation. Food security includes resilience to future disruptions of food supply. Such a disruption could occur due to various risk factors such as droughts and floods, shipping disruptions, fuel shortages, economic instability, and wars. Food insecurity is the opposite of food security: a state where there is only limited or uncertain availability of suitable food.

<span class="mw-page-title-main">Polyculture</span> Growing multiple crops together in agriculture

In agriculture, polyculture is the practice of growing more than one crop species together in the same place at the same time, in contrast to monoculture, which had become the dominant approach in developed countries by 1950. Traditional examples include the intercropping of the Three Sisters, namely maize, beans, and squashes, by indigenous peoples of Central and North America, the rice-fish systems of Asia, and the complex mixed cropping systems of Nigeria.

<span class="mw-page-title-main">Plant-based diet</span> Diet consisting mostly or entirely of plant-based foods

A plant-based diet is a diet consisting mostly or entirely of plant-based foods. Plant-based diets encompass a wide range of dietary patterns that contain low amounts of animal products and high amounts of fiber-rich plant products such as vegetables, fruits, whole grains, legumes, nuts and seeds. They do not need to be vegan or vegetarian, but are defined in terms of low frequency of animal food consumption.

Micronutrients are essential dietary elements required by organisms in varying quantities to regulate physiological functions of cells and organs. Micronutrients support the health of organisms throughout life.

<span class="mw-page-title-main">Agricultural biodiversity</span> Agricultural concept

Agricultural biodiversity or agrobiodiversity is a subset of general biodiversity pertaining to agriculture. It can be defined as "the variety and variability of animals, plants and micro-organisms at the genetic, species and ecosystem levels that sustain the ecosystem structures, functions and processes in and around production systems, and that provide food and non-food agricultural products.” It is managed by farmers, pastoralists, fishers and forest dwellers, agrobiodiversity provides stability, adaptability and resilience and constitutes a key element of the livelihood strategies of rural communities throughout the world. Agrobiodiversity is central to sustainable food systems and sustainable diets. The use of agricultural biodiversity can contribute to food security, nutrition security, and livelihood security, and it is critical for climate adaptation and climate mitigation.

<span class="mw-page-title-main">Environmental vegetarianism</span> Type of practice of vegetarianism

Environmental vegetarianism is the practice of vegetarianism that is motivated by the desire to create a sustainable diet, which avoids the negative environmental impact of meat production. Livestock as a whole is estimated to be responsible for around 15% of global greenhouse gas emissions. As a result, significant reduction in meat consumption has been advocated by, among others, the Intergovernmental Panel on Climate Change in their 2019 special report and as part of the 2017 World Scientists' Warning to Humanity.

Food fortification or enrichment is the process of adding micronutrients to food. It can be carried out by food manufacturers, or by governments as a public health policy which aims to reduce the number of people with dietary deficiencies within a population. The predominant diet within a region can lack particular nutrients due to the local soil or from inherent deficiencies within the staple foods; the addition of micronutrients to staples and condiments can prevent large-scale deficiency diseases in these cases.

<span class="mw-page-title-main">Sustainable diet</span> Diet that contributes to the broader environmental and social sustainability

Sustainable diets are "dietary patterns that promote all dimensions of individuals’ health and wellbeing; have low environmental pressure and impact; are accessible, affordable, safe and equitable; and are culturally acceptable". These diets are nutritious, eco-friendly, economically sustainable, and accessible to people of various socioeconomic backgrounds. Sustainable diets attempt to address nutrient deficiencies and excesses, while accounting for ecological phenomena such as climate change, loss of biodiversity and land degradation. These diets are comparable to the climatarian diet, with the added domains of economic sustainability and accessibility.

Nutritional anthropology is the study of the interplay between human biology, economic systems, nutritional status, and food security. If economic and environmental changes in a community affect access to food, food security, and dietary health, then this interplay between culture and biology is in turn connected to broader historical and economic trends associated with globalization. Nutritional status affects overall health status, work performance potential, and the overall potential for economic development for any given group of people.

<span class="mw-page-title-main">Biofortification</span> Breeding crops for higher nutritional value

Biofortification is the idea of breeding crops to increase their nutritional value. This can be done either through conventional selective breeding, or through genetic engineering. Biofortification differs from ordinary fortification because it focuses on making plant foods more nutritious as the plants are growing, rather than having nutrients added to the foods when they are being processed. This is an important improvement on ordinary fortification when it comes to providing nutrients for the rural poor, who rarely have access to commercially fortified foods. As such, biofortification is seen as an upcoming strategy for dealing with deficiencies of micronutrients in low and middle-income countries. In the case of iron, the WHO estimated that biofortification could help cure the 2 billion people suffering from iron deficiency-induced anemia.

Crop diversity or crop biodiversity is the variety and variability of crops, plants used in agriculture, including their genetic and phenotypic characteristics. It is a subset of a specific element of agricultural biodiversity. Over the past 50 years, there has been a major decline in two components of crop diversity; genetic diversity within each crop and the number of species commonly grown.

<span class="mw-page-title-main">Staple food</span> Food that is eaten routinely and considered a dominant portion of a standard diet

A staple food, food staple, or simply staple, is a food that is eaten often and in such quantities that it constitutes a dominant portion of a standard diet for an individual or a population group, supplying a large fraction of energy needs and generally forming a significant proportion of the intake of other nutrients as well. For humans, a staple food of a specific society may be eaten as often as every day or every meal, and most people live on a diet based on just a small variety of food staples. Specific staples vary from place to place, but typically are inexpensive or readily available foods that supply one or more of the macronutrients and micronutrients needed for survival and health: carbohydrates, proteins, fats, minerals, and vitamins. Typical examples include grains, seeds, nuts and root vegetables. Among them, cereals, legumes and tubers account for about 90% of the world's food calorie intake.

<span class="mw-page-title-main">International Year of Pulses</span>

2016 was declared as the International Year of Pulses by the sixty eighth session of the United Nations General Assembly on December 20, 2013. The Food and Agriculture Organization (FAO) of the United Nations has been nominated to declare a year for pulses, more commonly known as legumes.

Nutrient depletion is a form of resource depletion and refers to the loss of nutrients and micronutrients in a habitat or parts of the biosphere, most often the soil. On the level of a complete ecological niche or ecosystem, nutrient depletion can also come about via the loss of the nutrient substrate. Nutrients are usually the first link in the food chain, thus a loss of nutrients in a habitat will affect nutrient cycling and eventually the entire food chain.

Blue foods, also known as aquatic foods, are plants and animals sourced from aquatic environments and are suitable for human consumption. More than 2500 species of marine and freshwater animals, aquatic plants, and algae have been identified as relevant to the human diet.

References

  1. FAO (Food and Agriculture Organization) and Bioversity International (2017). Guidelines on Assessing Biodiverse Foods in Dietary Intake Surveys. Rome, Italy: FAO. p. 2. ISBN   978-92-5-109598-0.
  2. "Introduction to Nutritional Diversity | Cutting Edge Fitness & Health Diet". Nutritional Diversity. Retrieved 2019-01-20.
  3. "What is Agrobiodiversity?". www.fao.org. Retrieved 2023-11-03.
  4. "Household Dietary Diversity Score (HDDS) | INDDEX Project". inddex.nutrition.tufts.edu. Retrieved 2023-10-16.
  5. Lachat, Carl; Raneri, Jessica E.; Smith, Katherine Walker; Kolsteren, Patrick; Van Damme, Patrick; Verzelen, Kaat; Penafiel, Daniela; Vanhove, Wouter; Kennedy, Gina; Hunter, Danny; Odhiambo, Francis Oduor; Ntandou-Bouzitou, Gervais; De Baets, Bernard; Ratnasekera, Disna; Ky, Hoang The (2018-01-02). "Dietary species richness as a measure of food biodiversity and nutritional quality of diets". Proceedings of the National Academy of Sciences of the United States of America. 115 (1): 127–132. Bibcode:2018PNAS..115..127L. doi: 10.1073/pnas.1709194115 . ISSN   0027-8424. PMC   5776793 . PMID   29255049.
  6. D'Auria E; Peroni DG; Sartorio MUA; Verduci E; Zuccotti GV and Venter C (2020-09-15). "The Role of Diet Diversity and Diet Indices on Allergy Outcomes". Frontiers in Pediatrics. 8: 8:545. doi: 10.3389/fped.2020.00545 . PMC   7522364 . PMID   33042906.
  7. Services, Department of Health & Human. "Vitamins and minerals". www.betterhealth.vic.gov.au. Retrieved 2023-11-02.
  8. 1 2 Gina Kennedy; Zeyuan Wang; Patrick Maundu; Danny Hunter (2022). "The role of traditional knowledge and food biodiversity to transform modern food systems". Trends in Food Science and Technology. 130: 32–41. doi:10.1016/j.tifs.2022.09.011. S2CID   252722334.
  9. "Burden of Foodborne Illness: Findings | Estimates of Foodborne Illness | CDC". www.cdc.gov. 2023-06-15. Retrieved 2023-10-16.
  10. Benton, Bieg, Harwatt, Pudasaini, and Wellesley., Tim, Carling, Helen, Roshan, and Laura. Food system impacts on biodiversity loss Three levers for food system transformation in support of nature. p. 6. ISBN   978-1-78413-433-4.{{cite book}}: CS1 maint: multiple names: authors list (link)
  11. Hanley-Cook, Giles T.; Huybrechts, Inge; Biessy, Carine; Remans, Roseline; Kennedy, Gina; Deschasaux-Tanguy, Mélanie; Murray, Kris A.; Touvier, Mathilde; Skeie, Guri; Kesse-Guyot, Emmanuelle; Argaw, Alemayehu; Casagrande, Corinne; Nicolas, Geneviève; Vineis, Paolo; Millett, Christopher J. (2021-10-18). "Food biodiversity and total and cause-specific mortality in 9 European countries: An analysis of a prospective cohort study". PLOS Medicine. 18 (10): e1003834. doi: 10.1371/journal.pmed.1003834 . ISSN   1549-1277. PMC   8559947 . PMID   34662340.
  12. 1 2 Nunn, Nathan; Qian, Nancy (June 2010). "The Columbian Exchange: A History of Disease, Food, and Ideas". Journal of Economic Perspectives. 24 (2): 163–188. doi: 10.1257/jep.24.2.163 . ISSN   0895-3309.
  13. "Green Revolution - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2023-11-02.
  14. "VALUES OF BIODIVERSITY". wayback.archive-it.org. Archived from the original on 2012-01-17. Retrieved 2023-10-16.
  15. Sunderland, T.C.H (2011-09-01). "Food Security: why is biodiversity important?". International Forestry Review. 13 (10): 265–274. CiteSeerX   10.1.1.369.4363 . doi:10.1505/146554811798293908. S2CID   9942721.
  16. "Climate Impacts on Agriculture and Food Supply | Climate Change Impacts | US EPA". climatechange.chicago.gov. Retrieved 2023-10-16.
  17. Roesch-McNally, Gabrielle E.; Gordon Arbuckle, J.; Tyndall, John Charles (2017-06-01). "What would farmers do? Adaptation intentions under a Corn Belt climate change scenario". Agriculture and Human Values. 34 (2): 333–346. doi: 10.1007/s10460-016-9719-y . ISSN   1572-8366. S2CID   254236922.
  18. "FAO - News Article: The biodiversity that is crucial for our food and agriculture is disappearing by the day". www.fao.org. Retrieved 2023-11-03.
  19. Britwum, Kofi; Demont, Matty (December 2022). "Food security and the cultural heritage missing link". Global Food Security. 35: 100660. Bibcode:2022GlFS...3500660B. doi:10.1016/j.gfs.2022.100660. ISSN   2211-9124. PMC   9720156 . PMID   36483217.
  20. Yuan, Grace Ning; Marquez, Gian Powell B.; Deng, Haoran; Iu, Anastasiia; Fabella, Melisa; Salonga, Reginald B.; Ashardiono, Fitrio; Cartagena, Joyce A. (2022-11-12). "A review on urban agriculture: technology, socio-economy, and policy". Heliyon. 8 (11): e11583. Bibcode:2022Heliy...811583Y. doi: 10.1016/j.heliyon.2022.e11583 . ISSN   2405-8440. PMC   9668687 . PMID   36406682.
  21. "Developing More Sustainable Global Food Systems Through Agroecology and Biotechnology". United States Department of State. Retrieved 2023-11-03.
  22. Ge, Jiaqi; Polhill, J. Gareth; Macdiarmid, Jennie I.; Fitton, Nuala; Smith, Pete; Clark, Heather; Dawson, Terry; Aphale, Mukta (2021-01-13). "Food and nutrition security under global trade: a relation-driven agent-based global trade model". Royal Society Open Science. 8 (1): 201587. Bibcode:2021RSOS....801587G. doi:10.1098/rsos.201587. ISSN   2054-5703. PMC   7890508 . PMID   33614091.
  23. "Trade – a key ingredient to food security – UNCTAD SDG Pulse 2023". 2019-02-22. Retrieved 2023-10-16.
  24. "Biodiversity and Ecosystem Services: Is It the Same Below Ground? | Learn Science at Scitable". www.nature.com. Retrieved 2023-11-03.
  25. Bairagi, Subir; Custodio, Marie Claire; Durand-Morat, Alvaro; Demont, Matty (2021). "Preserving cultural heritage through the valorization of Cordillera heirloom rice in the Philippines". Agriculture and Human Values. 38 (1): 257–270. doi:10.1007/s10460-020-10159-w. ISSN   0889-048X. PMC   7884355 . PMID   33642679.
  26. H.H.Iltis (1988). "Serendipity in the Exploration of Biodiversity." In: E. O. Wilson, editor. Biodiversity. National Academy Press. 98-105.
  27. M.J.Plotkin. 1988. The Outlook for New Agricultural and Industrial Products from the Tropics. In: E.O. Wilson, Editor. Biodiversity. National Academy Press
  28. Rice Genetics Newsletter, Vol. 20: Evaluation of durable resistance of transgenic hybrid maintainer line IR58025B for bacterial blight disease of rice