Forkhead-associated domain

Last updated
FHA domain
PDB 2csw EBI.jpg
solution structure of the fha domain of human ubiquitin ligase protein rnf8
Identifiers
SymbolFHA
Pfam PF00498
Pfam clan CL0357
InterPro IPR000253
PROSITE PDOC50006
SCOP2 1qu5 / SCOPe / SUPFAM

In molecular biology, the forkhead-associated domain (FHA domain) is a phosphopeptide recognition domain found in many regulatory proteins. [1] It displays specificity for phosphothreonine-containing epitopes but will also recognise phosphotyrosine with relatively high affinity. It spans approximately 80-100 amino acid residues folded into an 11-stranded beta sandwich, which sometimes contains small helical insertions between the loops connecting the strands. [2]

To date, genes encoding FHA-containing proteins have been identified in eubacterial, eukaryotic and archaeal genomes. The domain is present in a diverse range of proteins, such as kinases, phosphatases, kinesins, transcription factors, RNA-binding proteins and metabolic enzymes which partake in many different cellular processes - DNA repair, signal transduction, vesicular transport and protein degradation are just a few examples.

Related Research Articles

SH3 domain Small protein domain found in some kinases and GTPases

The SRC Homology 3 Domain is a small protein domain of about 60 amino acid residues. Initially, SH3 was described as a conserved sequence in the viral adaptor protein v-Crk. This domain is also present in the molecules of phospholipase and several cytoplasmic tyrosine kinases such as Abl and Src. It has also been identified in several other protein families such as: PI3 Kinase, Ras GTPase-activating protein, CDC24 and cdc25. SH3 domains are found in proteins of signaling pathways regulating the cytoskeleton, the Ras protein, and the Src kinase and many others. The SH3 proteins interact with adaptor proteins and tyrosine kinases. Interacting with tyrosine kinases, SH3 proteins usually bind far away from the active site. Approximately 300 SH3 domains are found in proteins encoded in the human genome. In addition to that, the SH3 domain was responsible for controlling protein-protein interactions in the signal transduction pathways and regulating the interactions of proteins involved in the cytoplasmic signaling.

A mitogen-activated protein kinase is a type of protein kinase that is specific to the amino acids serine and threonine. MAPKs are involved in directing cellular responses to a diverse array of stimuli, such as mitogens, osmotic stress, heat shock and proinflammatory cytokines. They regulate cell functions including proliferation, gene expression, differentiation, mitosis, cell survival, and apoptosis.

Protein kinase C, commonly abbreviated to PKC (EC 2.7.11.13), is a family of protein kinase enzymes that are involved in controlling the function of other proteins through the phosphorylation of hydroxyl groups of serine and threonine amino acid residues on these proteins, or a member of this family. PKC enzymes in turn are activated by signals such as increases in the concentration of diacylglycerol (DAG) or calcium ions (Ca2+). Hence PKC enzymes play important roles in several signal transduction cascades.

14-3-3 protein

14-3-3 proteins are a family of conserved regulatory molecules that are expressed in all eukaryotic cells. 14-3-3 proteins have the ability to bind a multitude of functionally diverse signaling proteins, including kinases, phosphatases, and transmembrane receptors. More than 200 signaling proteins have been reported as 14-3-3 ligands.

A nuclear localization signalorsequence (NLS) is an amino acid sequence that 'tags' a protein for import into the cell nucleus by nuclear transport. Typically, this signal consists of one or more short sequences of positively charged lysines or arginines exposed on the protein surface. Different nuclear localized proteins may share the same NLS. An NLS has the opposite function of a nuclear export signal (NES), which targets proteins out of the nucleus.

PDZ domain

The PDZ domain is a common structural domain of 80-90 amino-acids found in the signaling proteins of bacteria, yeast, plants, viruses and animals. Proteins containing PDZ domains play a key role in anchoring receptor proteins in the membrane to cytoskeletal components. Proteins with these domains help hold together and organize signaling complexes at cellular membranes. These domains play a key role in the formation and function of signal transduction complexes. PDZ domains also play a highly significant role in the anchoring of cell surface receptors to the actin cytoskeleton via mediators like NHERF and ezrin.

Armadillo repeat

An armadillo repeat is the name of a characteristic, repetitive amino acid sequence of about 40 residues in length that is found in many proteins. Proteins that contain armadillo repeats typically contain several tandemly repeated copies. Each armadillo repeat is composed of a pair of alpha helices that form a hairpin structure. Multiple copies of the repeat form what is known as an alpha solenoid structure.

EF hand

The EF hand is a helix-loop-helix structural domain or motif found in a large family of calcium-binding proteins.

Eukaryotic Initiation Factor 2 (eIF2) is a eukaryotic initiation factor. It is required for most forms of eukaryotic translation initiation. eIF2 mediates the binding of tRNAiMet to the ribosome in a GTP-dependent manner. eIF2 is a heterotrimer consisting of an alpha, a beta, and a gamma subunit.

WD40 repeat Short protein motif that forms a solenoid domain

The WD40 repeat is a short structural motif of approximately 40 amino acids, often terminating in a tryptophan-aspartic acid (W-D) dipeptide. Tandem copies of these repeats typically fold together to form a type of circular solenoid protein domain called the WD40 domain.

Inhibitor of apoptosis domain

The inhibitor of apoptosis domain -- also known as IAP repeat, Baculovirus Inhibitor of apoptosis protein Repeat, or BIR -- is a structural motif found in proteins with roles in apoptosis, cytokine production, and chromosome segregation. Proteins containing BIR are known as inhibitor of apoptosis proteins (IAPs), or BIR-containing proteins, and include BIRC1 (NAIP), BIRC2 (cIAP1), BIRC3 (cIAP2), BIRC4 (xIAP), BIRC5 (survivin) and BIRC6.

Tetratricopeptide repeat

The tetratricopeptide repeat (TPR) is a structural motif. It consists of a degenerate 34 amino acid tandem repeat identified in a wide variety of proteins. It is found in tandem arrays of 3–16 motifs, which form scaffolds to mediate protein–protein interactions and often the assembly of multiprotein complexes. These alpha-helix pair repeats usually fold together to produce a single, linear solenoid domain called a TPR domain. Proteins with such domains include the anaphase-promoting complex (APC) subunits cdc16, cdc23 and cdc27, the NADPH oxidase subunit p67-phox, hsp90-binding immunophilins, transcription factors, the protein kinase R (PKR), the major receptor for peroxisomal matrix protein import PEX5, protein arginine methyltransferase 9 (PRMT9), and mitochondrial import proteins.

Von Willebrand factor type A domain

The von Willebrand factor type A (vWA) domain is a protein domain named after its occurrence in von Willebrand factor (vWF), a large multimeric glycoprotein found in blood plasma. Mutant forms of vWF are involved in the aetiology of bleeding disorders. This type A domain is the prototype for a protein superfamily.

Short linear motif

In molecular biology Short Linear Motifs are short stretches of protein sequence that mediate protein–protein interaction.

WW domain

The WW domain, is a modular protein domain that mediates specific interactions with protein ligands. This domain is found in a number of unrelated signaling and structural proteins and may be repeated up to four times in some proteins. Apart from binding preferentially to proteins that are proline-rich, with particular proline-motifs, [AP]-P-P-[AP]-Y, some WW domains bind to phosphoserine- phosphothreonine-containing motifs.

BRCT domain

BRCA1 C Terminus (BRCT) domain is a family of evolutionarily related proteins. It is named after the C-terminal domain of BRCA1, a DNA-repair protein that serves as a marker of breast cancer susceptibility.

WH1 domain is an evolutionary conserved protein domain. Therefore, it has an important function.

Chromo shadow domain

In molecular biology, the chromo shadow domain is a protein domain which is distantly related to the chromodomain. It is always found in association with a chromodomain. Proteins containing a chromo shadow domain include Drosophila and human heterochromatin protein Su(var)205 (HP1); and mammalian modifier 1 and modifier 2.

Focal adhesion targeting region

In structural and cell biology, the focal adhesion targeting domain is a conserved protein domain that was first identified in focal adhesion kinase (FAK), also known as PTK2 protein tyrosine kinase 2 (PTK2).

Eukaryotic translation initiation factor 4E family

In molecular biology, the eukaryotic translation initiation factor 4E family (eIF-4E) is a family of proteins that bind to the cap structure of eukaryotic cellular mRNAs. Members of this family recognise and bind the 7-methyl-guanosine-containing (m7Gppp) cap during an early step in the initiation of protein synthesis and facilitate ribosome binding to an mRNA by inducing the unwinding of its secondary structures. A tryptophan in the central part of the sequence of human eIF-4E seems to be implicated in cap-binding.

References

  1. Hofmann K, Bucher P (September 1995). "The FHA domain: a putative nuclear signalling domain found in protein kinases and transcription factors". Trends in Biochemical Sciences. 20 (9): 347–9. doi:10.1016/S0968-0004(00)89072-6. PMID   7482699.
  2. Durocher D, Jackson SP (February 2002). "The FHA domain". FEBS Letters. 513 (1): 58–66. doi: 10.1016/S0014-5793(01)03294-X . PMID   11911881. S2CID   12062684.
This article incorporates text from the public domain Pfam and InterPro: IPR000253