From Here to Infinity (book)

Last updated
From Here to Infinity
From Here to Infinity (book).jpg
Author Ian Stewart
CountryUnited Kingdom
Language English
Genre Popular science
PublisherOxford Paperbacks
Publication date
1996
Media typePrint
Pages310 pp.
ISBN 0-19-283202-6
OCLC 32699983

From Here to Infinity: A Guide to Today's Mathematics, a 1996 book by mathematician and science popularizer Ian Stewart, is a guide to modern mathematics for the general reader. It aims to answer questions such as "What is mathematics?", "What is it for " and "What are mathematicians doing nowadays?". Author Simon Singh describes it as "An interesting and accessible account of current mathematical topics". [1]

Contents

Summary

After an introductory chapter The Nature of Mathematics, Stewart devotes each of the following 18 chapters to an exposition of a particular problem that has given rise to new mathematics or an area of research in modern mathematics.

Editions

Important advances in mathematics necessitated revisions of the book. For example, when the 1st edition came out, Fermat's Last Theorem was still an open problem. By the 3rd edition, it has been solved by Andrew Wiles. Other revised topics include Tarski's circle-squaring problem, Carmichael numbers, and the Kepler Problem.

Related Research Articles

Andrew Wiles British mathematician who proved Fermats Last Theorem

Sir Andrew John Wiles is an English mathematician and a Royal Society Research Professor at the University of Oxford, specializing in number theory. He is best known for proving Fermat's Last Theorem, for which he was awarded the 2016 Abel Prize and the 2017 Copley Medal by the Royal Society. He was appointed Knight Commander of the Order of the British Empire in 2000, and in 2018 was appointed as the first Regius Professor of Mathematics at Oxford. Wiles is also a 1997 MacArthur Fellow.

Diophantus Alexandrian Greek mathematician

Diophantus of Alexandria was an Alexandrian mathematician, who was the author of a series of books called Arithmetica, many of which are now lost. His texts deal with solving algebraic equations. Diophantine equations and of Diophantine approximations are important areas of mathematical research. Diophantus coined the term παρισότης (parisotes) to refer to an approximate equality. This term was rendered as adaequalitas in Latin, and became the technique of adequality developed by Pierre de Fermat to find maxima for functions and tangent lines to curves. Diophantus was the first Greek mathematician who recognized fractions as numbers; thus he allowed positive rational numbers for the coefficients and solutions. In modern use, Diophantine equations are usually algebraic equations with integer coefficients, for which integer solutions are sought.

Mathematical logic, also called formal logic, is a subfield of mathematics exploring the applications of formal logic to mathematics. It bears close connections to metamathematics, the foundations of mathematics, philosophy, and theoretical computer science. The unifying themes in mathematical logic include the study of the expressive power of formal systems and the deductive power of formal proof systems.

Number theory Branch of mathematics

Number theory is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers or defined as generalizations of the integers.

Prime number Positive integer with exactly two divisors, 1 and itself

A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.

Fermat's little theorem states that if p is a prime number, then for any integer a, the number apa is an integer multiple of p. In the notation of modular arithmetic, this is expressed as

Ian Stewart (mathematician)

Ian Nicholas Stewart is a British mathematician and a popular-science and science-fiction writer. He is Emeritus Professor of Mathematics at the University of Warwick, England.

Simon Singh British physicist and popular science author (born 1964)

Simon Lehna Singh, is a British popular science author, theoretical and particle physicist whose works largely contain a strong mathematical element. His written works include Fermat's Last Theorem, The Code Book, Big Bang, Trick or Treatment? Alternative Medicine on Trial and The Simpsons and Their Mathematical Secrets. In 2012 Singh founded the Good Thinking Society, through which he created the website "Parallel" to help students learn mathematics.

Bhāskara II Indian mathematician and astronomer (c.1114–1185)

Bhāskara also known as Bhāskarāchārya, and as Bhāskara II to avoid confusion with Bhāskara I, was an Indian mathematician and astronomer. He was born in Bijapur in Karnataka.

Lists of mathematics topics cover a variety of topics related to mathematics. Some of these lists link to hundreds of articles; some link only to a few. The template to the right includes links to alphabetical lists of all mathematical articles. This article brings together the same content organized in a manner better suited for browsing. Lists cover aspects of basic and advanced mathematics, methodology, mathematical statements, integrals, general concepts, mathematical objects and reference tables. They also cover equations named after people, societies, mathematicians, journals and meta-lists.

In mathematics, a fixed-point theorem is a result saying that a function F will have at least one fixed point, under some conditions on F that can be stated in general terms. Results of this kind are amongst the most generally useful in mathematics.

Popular mathematics is mathematical presentation aimed at a general audience. Sometimes this is in the form of books which require no mathematical background and in other cases it is in the form of expository articles written by professional mathematicians to reach out to others working in different areas.

Pierre de Fermat French mathematician and lawyer

Pierre de Fermat was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he is recognized for his discovery of an original method of finding the greatest and the smallest ordinates of curved lines, which is analogous to that of differential calculus, then unknown, and his research into number theory. He made notable contributions to analytic geometry, probability, and optics. He is best known for his Fermat's principle for light propagation and his Fermat's Last Theorem in number theory, which he described in a note at the margin of a copy of Diophantus' Arithmetica. He was also a lawyer at the Parlement of Toulouse, France.

Fermats Last Theorem 17th century conjecture proved by Andrew Wiles in 1994

In number theory, Fermat's Last Theorem states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions.

This is a timeline of pure and applied mathematics history. It is divided here into three stages, corresponding to stages in the development of mathematical notation: a "rhetorical" stage in which calculations are described purely by words, a "syncopated" stage in which quantities and common algebraic operations are beginning to be represented by symbolic abbreviations, and finally a "symbolic" stage, in which comprehensive notational systems for formulas are the norm.

Wiless proof of Fermats Last Theorem Proof of a special case of the modularity theorem for elliptic curves

Wiles's proof of Fermat's Last Theorem is a proof by British mathematician Andrew Wiles of a special case of the modularity theorem for elliptic curves. Together with Ribet's theorem, it provides a proof for Fermat's Last Theorem. Both Fermat's Last Theorem and the modularity theorem were almost universally considered inaccessible to proof by contemporaneous mathematicians, meaning that they were believed to be impossible to prove using current knowledge.

Mathematical Cranks is a book on pseudomathematics and the cranks who create it, written by Underwood Dudley. It was published by the Mathematical Association of America in their MAA Spectrum book series in 1992 (ISBN 0-88385-507-0).

<i>Fermats Last Theorem</i> (book) Non-fiction book by Simon Singh

Fermat's Last Theorem is a popular science book (1997) by Simon Singh. It tells the story of the search for a proof of Fermat's Last Theorem, first conjectured by Pierre de Fermat in 1637, and explores how many mathematicians such as Évariste Galois had tried and failed to provide a proof for the theorem. Despite the efforts of many mathematicians, the proof would remain incomplete until as late as 1995, with the publication of Andrew Wiles' proof of the Theorem. The book is the first mathematics book to become a Number One seller in the United Kingdom, whilst Singh's documentary The Proof, on which the book was based, won a BAFTA in 1997.

Primality Testing for Beginners is an undergraduate-level mathematics book on primality tests, methods for testing whether a given number is a prime number, centered on the AKS primality test, the first method to solve this problem in polynomial time. It was written by Lasse Rempe-Gillen and Rebecca Waldecker, and originally published in German as Primzahltests für Einsteiger: Zahlentheorie, Algorithmik, Kryptographie. It was translated into English as Primality Testing for Beginners and published in 2014 by the American Mathematical Society, as volume 70 of their Student Mathematical Library book series. A second German-language edition was publisher by Springer in 2016.

References

  1. My Favourite Mathematics Books Archived 2008-09-17 at the Wayback Machine , Simon Singh