The sheaf of rational functionsKX of a scheme X is the generalization to scheme theory of the notion of function field of an algebraic variety in classical algebraic geometry. In the case of varieties, such a sheaf associates to each open set U the ring of all rational functions on that open set; in other words, KX(U) is the set of fractions of regular functions on U. Despite its name, KX does not always give a field for a general scheme X.
In the simplest cases, the definition of KX is straightforward. If X is an (irreducible) affine algebraic variety, and if U is an open subset of X, then KX(U) will be the field of fractions of the ring of regular functions on U. Because X is affine, the ring of regular functions on U will be a localization of the global sections of X, and consequently KX will be the constant sheaf whose value is the fraction field of the global sections of X.
If X is integral but not affine, then any non-empty affine open set will be dense in X. This means there is not enough room for a regular function to do anything interesting outside of U, and consequently the behavior of the rational functions on U should determine the behavior of the rational functions on X. In fact, the fraction fields of the rings of regular functions on any open set will be the same, so we define, for any U, KX(U) to be the common fraction field of any ring of regular functions on any open affine subset of X. Alternatively, one can define the function field in this case to be the local ring of the generic point.
The trouble starts when X is no longer integral. Then it is possible to have zero divisors in the ring of regular functions, and consequently the fraction field no longer exists. The naive solution is to replace the fraction field by the total quotient ring, that is, to invert every element that is not a zero divisor. Unfortunately, in general, the total quotient ring does not produce a presheaf much less a sheaf. The well-known article of Kleiman, listed in the bibliography, gives such an example.
The correct solution is to proceed as follows:
Once KX is defined, it is possible to study properties of X which depend only on KX. This is the subject of birational geometry.
If X is an algebraic variety over a field k, then over each open set U we have a field extension KX(U) of k. The dimension of U will be equal to the transcendence degree of this field extension. All finite transcendence degree field extensions of k correspond to the rational function field of some variety.
In the particular case of an algebraic curve C, that is, dimension 1, it follows that any two non-constant functions F and G on C satisfy a polynomial equation P(F,G) = 0.
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros.
In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.
In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field of rational numbers. Intuitively, it consists of ratios between integral domain elements.
In commutative algebra, the prime spectrum of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.
In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module R, so that it consists of fractions such that the denominator s belongs to a given subset S of R. If S is the set of the non-zero elements of an integral domain, then the localization is the field of fractions: this case generalizes the construction of the field of rational numbers from the ring of integers.
In algebraic geometry, an affine variety, or affine algebraic variety, over an algebraically closed field k is the zero-locus in the affine space kn of some finite family of polynomials of n variables with coefficients in k that generate a prime ideal. If the condition of generating a prime ideal is removed, such a set is called an (affine) algebraic set. A Zariski open subvariety of an affine variety is called a quasi-affine variety.
In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.
In mathematics, a Cohen–Macaulay ring is a commutative ring with some of the algebro-geometric properties of a smooth variety, such as local equidimensionality. Under mild assumptions, a local ring is Cohen–Macaulay exactly when it is a finitely generated free module over a regular local subring. Cohen–Macaulay rings play a central role in commutative algebra: they form a very broad class, and yet they are well understood in many ways.
In mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative". The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety X amounts to understanding the different ways of mapping X into projective space. In view of the correspondence between line bundles and divisors, there is an equivalent notion of an ample divisor.
In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors. Both are derived from the notion of divisibility in the integers and algebraic number fields.
In algebraic geometry, the function field of an algebraic variety V consists of objects which are interpreted as rational functions on V. In classical algebraic geometry they are ratios of polynomials; in complex algebraic geometry these are meromorphic functions and their higher-dimensional analogues; in modern algebraic geometry they are elements of some quotient ring's field of fractions.
In abstract algebra, the total quotient ring, or total ring of fractions, is a construction that generalizes the notion of the field of fractions of an integral domain to commutative rings R that may have zero divisors. The construction embeds R in a larger ring, giving every non-zero-divisor of R an inverse in the larger ring. If the homomorphism from R to the new ring is to be injective, no further elements can be given an inverse.
In mathematics, the residue field is a basic construction in commutative algebra. If R is a commutative ring and m is a maximal ideal, then the residue field is the quotient ring k = R/m, which is a field. Frequently, R is a local ring and m is then its unique maximal ideal.
In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and they are isomorphisms in the category of algebraic varieties. Because regular and biregular are very restrictive conditions – there are no non-constant regular functions on projective varieties – the weaker condition of a rational map and birational maps are frequently used as well.
Noncommutative algebraic geometry is a branch of mathematics, and more specifically a direction in noncommutative geometry, that studies the geometric properties of formal duals of non-commutative algebraic objects such as rings as well as geometric objects derived from them.
Projective space plays a central role in algebraic geometry. The aim of this article is to define the notion in terms of abstract algebraic geometry and to describe some basic uses of projective space.
This is a glossary of algebraic geometry.
In algebraic geometry, a Gorenstein scheme is a locally Noetherian scheme whose local rings are all Gorenstein. The canonical line bundle is defined for any Gorenstein scheme over a field, and its properties are much the same as in the special case of smooth schemes.