Function representation

Last updated

Function Representation (FRep [1] or F-Rep) is used in solid modeling, volume modeling and computer graphics. FRep was introduced in "Function representation in geometric modeling: concepts, implementation and applications" [2] as a uniform representation of multidimensional geometric objects (shapes). An object as a point set in multidimensional space is defined by a single continuous real-valued function of point coordinates which is evaluated at the given point by a procedure traversing a tree structure with primitives in the leaves and operations in the nodes of the tree. The points with belong to the object, and the points with are outside of the object. The point set with is called an isosurface.

Contents

Geometric domain

The geometric domain of FRep in 3D space includes solids with non-manifold models and lower-dimensional entities (surfaces, curves, points) defined by zero value of the function. A primitive can be defined by an equation or by a "black box" procedure converting point coordinates into the function value. Solids bounded by algebraic surfaces, skeleton-based implicit surfaces, and convolution surfaces, as well as procedural objects (such as solid noise), and voxel objects can be used as primitives (leaves of the construction tree). In the case of a voxel object (discrete field), it should be converted to a continuous real function, for example, by applying the trilinear or higher-order interpolation.

Many operations such as set-theoretic, blending, offsetting, projection, non-linear deformations, metamorphosis, sweeping, hypertexturing, and others, have been formulated for this representation in such a manner that they yield continuous real-valued functions as output, thus guaranteeing the closure property of the representation. R-functions originally introduced in V.L. Rvachev's "On the analytical description of some geometric objects", [3] provide continuity for the functions exactly defining the set-theoretic operations (min/max functions are a particular case). Because of this property, the result of any supported operation can be treated as the input for a subsequent operation; thus very complex models can be created in this way from a single functional expression. FRep modeling is supported by the special-purpose language HyperFun.

Shape Models

FRep combines and generalizes different shape models like

A more general "constructive hypervolume" [4] allows for modeling multidimensional point sets with attributes (volume models in 3D case). Point set geometry and attributes have independent representations but are treated uniformly. A point set in a geometric space of an arbitrary dimension is an FRep based geometric model of a real object. An attribute that is also represented by a real-valued function (not necessarily continuous) is a mathematical model of an object property of an arbitrary nature (material, photometric, physical, medicine, etc.). The concept of "implicit complex" proposed in "Cellular-functional modeling of heterogeneous objects" [5] provides a framework for including geometric elements of different dimensionality by combining polygonal, parametric, and FRep components into a single cellular-functional model of a heterogeneous object.

See also

Related Research Articles

Mathematical analysis Branch of mathematics

Analysis is the branch of mathematics dealing with continuous functions, limits, and related theories, such as differentiation, integration, measure, infinite sequences, series, and analytic functions.

Function (mathematics) Association of a single output to each input

In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. The set X is called the domain of the function and the set Y is called the codomain of the function.

In mathematics, an implicit equation is a relation of the form R(x1, …, xn) = 0, where R is a function of several variables. For example, the implicit equation of the unit circle is x2 + y2 − 1 = 0.

In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set X into a vector space has a natural vector space structure given by pointwise addition and scalar multiplication. In other scenarios, the function space might inherit a topological or metric structure, hence the name function space.

Constructive solid geometry Creating a complex 3D surface or object by combining primitive objects

Constructive solid geometry is a technique used in solid modeling. Constructive solid geometry allows a modeler to create a complex surface or object by using Boolean operators to combine simpler objects, potentially generating visually complex objects by combining a few primitive ones.

In mathematics, and more specifically in geometry, parametrization is the process of finding parametric equations of a curve, a surface, or, more generally, a manifold or a variety, defined by an implicit equation. The inverse process is called implicitization. "To parameterize" by itself means "to express in terms of parameters".

Solid modeling Set of principles for modeling solid geometry

Solid modeling is a consistent set of principles for mathematical and computer modeling of three-dimensional solids. Solid modeling is distinguished from related areas of geometric modeling and computer graphics, such as 3D modeling, by its emphasis on physical fidelity. Together, the principles of geometric and solid modeling form the foundation of 3D-computer-aided design and in general support the creation, exchange, visualization, animation, interrogation, and annotation of digital models of physical objects.

Level set Subset of a functions domain on which its value is equal

In mathematics, a level set of a real-valued function f of n real variables is a set where the function takes on a given constant value c, that is:

Parametric equation Representation of a curve by a function of a parameter

In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface, in which case the equations are collectively called a parametric representation or parameterization of the object.

Point (geometry) Fundamental object of geometry

In classical Euclidean geometry, a point is a primitive notion that models an exact location in the space, and has no length, width, or thickness. In modern mathematics, a point refers more generally to an element of some set called a space.

Metaballs

In computer graphics, metaballs are organic-looking n-dimensional isosurfaces, characterised by their ability to meld together when in close proximity to create single, contiguous objects.

Isosurface

An isosurface is a three-dimensional analog of an isoline. It is a surface that represents points of a constant value within a volume of space; in other words, it is a level set of a continuous function whose domain is 3D-space.

Implicit surface

In mathematics, an implicit surface is a surface in Euclidean space defined by an equation

Manifold Topological space that locally resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or n-manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of n-dimensional Euclidean space.

Surface (mathematics) Mathematical idealization of the surface of a body

In mathematics, a surface is a mathematical model of the common concept of a surface. It is a generalization of a plane, but, unlike a plane, it may be curved; this is analogous to a curve generalizing a straight line.

HyperFun is a programming language and software used to create, visualize, and fabricate volumetric 3D and higher-dimensional models.

Digital materialization (DM) can loosely be defined as two-way direct communication or conversion between matter and information that enables people to exactly describe, monitor, manipulate and create any arbitrary real object. DM is a general paradigm alongside a specified framework that is suitable for computer processing and includes: holistic, coherent, volumetric modeling systems; symbolic languages that are able to handle infinite degrees of freedom and detail in a compact format; and the direct interaction and/or fabrication of any object at any spatial resolution without the need for “lossy” or intermediate formats.

Mathematics is a broad subject that is commonly divided in many areas that may be defined by their objects of study, by the used methods, or by both. For example, analytic number theory is a subarea of number theory devoted to the use of methods of analysis for the study of natural numbers.

In mathematical analysis and its applications, a function of several real variables or real multivariate function is a function with more than one argument, with all arguments being real variables. This concept extends the idea of a function of a real variable to several variables. The "input" variables take real values, while the "output", also called the "value of the function", may be real or complex. However, the study of the complex valued functions may be easily reduced to the study of the real valued functions, by considering the real and imaginary parts of the complex function; therefore, unless explicitly specified, only real valued functions will be considered in this article.

References

  1. Shape Modeling and Computer Graphics with Real Functions, FRep Home Page
  2. A. Pasko, V. Adzhiev, A. Sourin, V. Savchenko, "Function representation in geometric modeling: concepts, implementation and applications", The Visual Computer, vol.11, no.8, 1995, pp.429-446.
  3. V.L. Rvachev, "On the analytical description of some geometric objects", Reports of Ukrainian Academy of Sciences, vol. 153, no. 4, 1963, pp. 765-767 (in Russian).
  4. A. Pasko, V. Adzhiev, B. Schmitt, C. Schlick, "Constructive hypervolume modelling", Graphical Models, 63(6), 2001, pp. 413-442.
  5. V. Adzhiev, E. Kartasheva, T. Kunii, A. Pasko, B. Schmitt, "Cellular-functional modeling of heterogeneous objects", Proc. 7th ACM Symposium on Solid Modeling and Applications, Saarbrücken, Germany, ACM Press, 2002, pp. 192-203. 3-540-65620-0