Functional renormalization group

Last updated

In theoretical physics, functional renormalization group (FRG) is an implementation of the renormalization group (RG) concept which is used in quantum and statistical field theory, especially when dealing with strongly interacting systems. The method combines functional methods of quantum field theory with the intuitive renormalization group idea of Kenneth G. Wilson. This technique allows to interpolate smoothly between the known microscopic laws and the complicated macroscopic phenomena in physical systems. In this sense, it bridges the transition from simplicity of microphysics to complexity of macrophysics. Figuratively speaking, FRG acts as a microscope with a variable resolution. One starts with a high-resolution picture of the known microphysical laws and subsequently decreases the resolution to obtain a coarse-grained picture of macroscopic collective phenomena. The method is nonperturbative, meaning that it does not rely on an expansion in a small coupling constant. Mathematically, FRG is based on an exact functional differential equation for a scale-dependent effective action.

Contents

The flow equation for the effective action

In quantum field theory, the effective action is an analogue of the classical action functional and depends on the fields of a given theory. It includes all quantum and thermal fluctuations. Variation of yields exact quantum field equations, for example for cosmology or the electrodynamics of superconductors. Mathematically, is the generating functional of the one-particle irreducible Feynman diagrams. Interesting physics, as propagators and effective couplings for interactions, can be straightforwardly extracted from it. In a generic interacting field theory the effective action , however, is difficult to obtain. FRG provides a practical tool to calculate employing the renormalization group concept.

The central object in FRG is a scale-dependent effective action functional often called average action or flowing action. The dependence on the RG sliding scale is introduced by adding a regulator (infrared cutoff) to the full inverse propagator . Roughly speaking, the regulator decouples slow modes with momenta by giving them a large mass, while high momentum modes are not affected. Thus, includes all quantum and statistical fluctuations with momenta . The flowing action obeys the exact functional flow equation

derived by Christof Wetterich and Tim R. Morris in 1993. Here denotes a derivative with respect to the RG scale at fixed values of the fields. Furthermore, denotes the functional derivative of from the left-hand-side and the right-hand-side respectively, due to the tensor structure of the equation. This feature is often shown simplified by the second derivative of the effective action. The functional differential equation for must be supplemented with the initial condition , where the "classical action" describes the physics at the microscopic ultraviolet scale . Importantly, in the infrared limit the full effective action is obtained. In the Wetterich equation denotes a supertrace which sums over momenta, frequencies, internal indices, and fields (taking bosons with a plus and fermions with a minus sign). The exact flow equation for has a one-loop structure. This is an important simplification compared to perturbation theory, where multi-loop diagrams must be included. The second functional derivative is the full inverse field propagator modified by the presence of the regulator .

The renormalization group evolution of can be illustrated in the theory space, which is a multi-dimensional space of all possible running couplings allowed by the symmetries of the problem. As schematically shown in the figure, at the microscopic ultraviolet scale one starts with the initial condition .

Renormalization group flow in the theory space of all possible couplings allowed by symmetries. Theoryspace.png
Renormalization group flow in the theory space of all possible couplings allowed by symmetries.

As the sliding scale is lowered, the flowing action evolves in the theory space according to the functional flow equation. The choice of the regulator is not unique, which introduces some scheme dependence into the renormalization group flow. For this reason, different choices of the regulator correspond to the different paths in the figure. At the infrared scale , however, the full effective action is recovered for every choice of the cut-off , and all trajectories meet at the same point in the theory space.

In most cases of interest the Wetterich equation can only be solved approximately. Usually some type of expansion of is performed, which is then truncated at finite order leading to a finite system of ordinary differential equations. Different systematic expansion schemes (such as the derivative expansion, vertex expansion, etc.) were developed. The choice of the suitable scheme should be physically motivated and depends on a given problem. The expansions do not necessarily involve a small parameter (like an interaction coupling constant) and thus they are, in general, of nonperturbative nature.

Note however, that due to multiple choices regarding (prefactor-)conventions and the concrete definition of the effective action, one can find other (equivalent) versions of the Wetterich equation in the literature. [1]

Aspects of functional renormalization

Functional renormalization-group for Wick-ordered effective interaction

Contrary to the flow equation for the effective action, this scheme is formulated for the effective interaction

which generates n-particle interaction vertices, amputated by the bare propagators ; is the "standard" generating functional for the n-particle Green functions.

The Wick ordering of effective interaction with respect to Green function can be defined by

.

where is the Laplacian in the field space. This operation is similar to Normal order and excludes from the interaction all possible terms, formed by a convolution of source fields with respective Green function D. Introducing some cutoff the Polchinskii equation

takes the form of the Wick-ordered equation

where

Applications

The method was applied to numerous problems in physics, e.g.:

See also

Related Research Articles

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.

In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the underlying force laws as the energy scale at which physical processes occur varies, energy/momentum and resolution distance scales being effectively conjugate under the uncertainty principle.

In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously an algebra and a coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antiautomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.

In quantum field theory, Wilson loops are gauge invariant operators arising from the parallel transport of gauge variables around closed loops. They encode all gauge information of the theory, allowing for the construction of loop representations which fully describe gauge theories in terms of these loops. In pure gauge theory they play the role of order operators for confinement, where they satisfy what is known as the area law. Originally formulated by Kenneth G. Wilson in 1974, they were used to construct links and plaquettes which are the fundamental parameters in lattice gauge theory. Wilson loops fall into the broader class of loop operators, with some other notable examples being 't Hooft loops, which are magnetic duals to Wilson loops, and Polyakov loops, which are the thermal version of Wilson loops.

<span class="mw-page-title-main">Coupling constant</span> Parameter describing the strength of a force

In physics, a coupling constant or gauge coupling parameter, is a number that determines the strength of the force exerted in an interaction. Originally, the coupling constant related the force acting between two static bodies to the "charges" of the bodies divided by the distance squared, , between the bodies; thus: in for Newtonian gravity and in for electrostatic. This description remains valid in modern physics for linear theories with static bodies and massless force carriers.

In physics, mathematics and statistics, scale invariance is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality.

<span class="mw-page-title-main">Effective action</span> Quantum version of the classical action

In quantum field theory, the quantum effective action is a modified expression for the classical action taking into account quantum corrections while ensuring that the principle of least action applies, meaning that extremizing the effective action yields the equations of motion for the vacuum expectation values of the quantum fields. The effective action also acts as a generating functional for one-particle irreducible correlation functions. The potential component of the effective action is called the effective potential, with the expectation value of the true vacuum being the minimum of this potential rather than the classical potential, making it important for studying spontaneous symmetry breaking.

In physics, the Majorana equation is a relativistic wave equation. It is named after the Italian physicist Ettore Majorana, who proposed it in 1937 as a means of describing fermions that are their own antiparticle. Particles corresponding to this equation are termed Majorana particles, although that term now has a more expansive meaning, referring to any fermionic particle that is its own anti-particle.

<span class="mw-page-title-main">Callan–Symanzik equation</span> Evolutionary equation under renormalization group flow

In physics, the Callan–Symanzik equation is a differential equation describing the evolution of the n-point correlation functions under variation of the energy scale at which the theory is defined and involves the beta function of the theory and the anomalous dimensions.

In theoretical physics, a source field is a background field coupled to the original field as

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

The quantum Heisenberg model, developed by Werner Heisenberg, is a statistical mechanical model used in the study of critical points and phase transitions of magnetic systems, in which the spins of the magnetic systems are treated quantum mechanically. It is related to the prototypical Ising model, where at each site of a lattice, a spin represents a microscopic magnetic dipole to which the magnetic moment is either up or down. Except the coupling between magnetic dipole moments, there is also a multipolar version of Heisenberg model called the multipolar exchange interaction.

Widom scaling is a hypothesis in statistical mechanics regarding the free energy of a magnetic system near its critical point which leads to the critical exponents becoming no longer independent so that they can be parameterized in terms of two values. The hypothesis can be seen to arise as a natural consequence of the block-spin renormalization procedure, when the block size is chosen to be of the same size as the correlation length.

In theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation.

In mathematical physics, the Belinfante–Rosenfeld tensor is a modification of the energy–momentum tensor that is constructed from the canonical energy–momentum tensor and the spin current so as to be symmetric yet still conserved.

<span class="mw-page-title-main">Two-body Dirac equations</span> Quantum field theory equations

In quantum field theory, and in the significant subfields of quantum electrodynamics (QED) and quantum chromodynamics (QCD), the two-body Dirac equations (TBDE) of constraint dynamics provide a three-dimensional yet manifestly covariant reformulation of the Bethe–Salpeter equation for two spin-1/2 particles. Such a reformulation is necessary since without it, as shown by Nakanishi, the Bethe–Salpeter equation possesses negative-norm solutions arising from the presence of an essentially relativistic degree of freedom, the relative time. These "ghost" states have spoiled the naive interpretation of the Bethe–Salpeter equation as a quantum mechanical wave equation. The two-body Dirac equations of constraint dynamics rectify this flaw. The forms of these equations can not only be derived from quantum field theory they can also be derived purely in the context of Dirac's constraint dynamics and relativistic mechanics and quantum mechanics. Their structures, unlike the more familiar two-body Dirac equation of Breit, which is a single equation, are that of two simultaneous quantum relativistic wave equations. A single two-body Dirac equation similar to the Breit equation can be derived from the TBDE. Unlike the Breit equation, it is manifestly covariant and free from the types of singularities that prevent a strictly nonperturbative treatment of the Breit equation. In applications of the TBDE to QED, the two particles interact by way of four-vector potentials derived from the field theoretic electromagnetic interactions between the two particles. In applications to QCD, the two particles interact by way of four-vector potentials and Lorentz invariant scalar interactions, derived in part from the field theoretic chromomagnetic interactions between the quarks and in part by phenomenological considerations. As with the Breit equation a sixteen-component spinor Ψ is used.

<span class="mw-page-title-main">Asymptotic safety in quantum gravity</span> Attempt to find a consistent theory of quantum gravity

Asymptotic safety is a concept in quantum field theory which aims at finding a consistent and predictive quantum theory of the gravitational field. Its key ingredient is a nontrivial fixed point of the theory's renormalization group flow which controls the behavior of the coupling constants in the ultraviolet (UV) regime and renders physical quantities safe from divergences. Although originally proposed by Steven Weinberg to find a theory of quantum gravity, the idea of a nontrivial fixed point providing a possible UV completion can be applied also to other field theories, in particular to perturbatively nonrenormalizable ones. In this respect, it is similar to quantum triviality.

<span class="mw-page-title-main">Dual graviton</span> Hypothetical particle found in supergravity

In theoretical physics, the dual graviton is a hypothetical elementary particle that is a dual of the graviton under electric-magnetic duality, as an S-duality, predicted by some formulations of supergravity in eleven dimensions.

Hamiltonian truncation is a numerical method used to study quantum field theories (QFTs) in spacetime dimensions. Hamiltonian truncation is an adaptation of the Rayleigh–Ritz method from quantum mechanics. It is closely related to the exact diagonalization method used to treat spin systems in condensed matter physics. The method is typically used to study QFTs on spacetimes of the form , specifically to compute the spectrum of the Hamiltonian along . A key feature of Hamiltonian truncation is that an explicit ultraviolet cutoff is introduced, akin to the lattice spacing a in lattice Monte Carlo methods. Since Hamiltonian truncation is a nonperturbative method, it can be used to study strong-coupling phenomena like spontaneous symmetry breaking.

References

Papers

  1. Kopietz, Peter; Bartosch, Lorenz; Schütz, Florian (2010). Introduction to the Functional Renormalization Group. Springer. ISBN   9783642050947.

Pedagogic reviews