Functional testing (manufacturing)

Last updated

Functional testing in manufacturing (FCT) is a test typically performed during the last phase of the production line. [1] This is often referred to as a final quality control test, which is done to ensure that specifications are carried out by FCTs.

Contents

The process of FCTs is entailed by the emulation or simulation of the environment in which a product is expected to operate. This is done so to check, and correct any issues with functionality. The environment involved with FCTs consists of any device that communicates with an DUT, the power supply of said DUT, and any loads needed to make the DUT function correctly.

FCTs uses customer specific connectors, rather than a test point on the PCB.

Functional tests are performed in an automatic fashion by production line operators using test software. In order for this to be completed, the software will communicate with any external programmable instruments such as I/O boards, digital multimeters, and communication ports. In conjunction with the test fixture, the software that interfaces with the DUT is what makes it possible for a FCT to be performed.

Typical vendors

See also

Related Research Articles

<span class="mw-page-title-main">Acceptance testing</span> Test to determine if the requirements of a specification or contract are met

In engineering and its various subdisciplines, acceptance testing is a test conducted to determine if the requirements of a specification or contract are met. It may involve chemical tests, physical tests, or performance tests.

Software testing is the act of examining the artifacts and the behavior of the software under test by validation and verification. Software testing can also provide an objective, independent view of the software to allow the business to appreciate and understand the risks of software implementation. Test techniques include, but are not necessarily limited to:

Regression testing is re-running functional and non-functional tests to ensure that previously developed and tested software still performs as expected after a change. If not, that would be called a regression.

In software quality assurance, performance testing is in general a testing practice performed to determine how a system performs in terms of responsiveness and stability under a particular workload. It can also serve to investigate, measure, validate or verify other quality attributes of the system, such as scalability, reliability and resource usage.

A sanity check or sanity test is a basic test to quickly evaluate whether a claim or the result of a calculation can possibly be true. It is a simple check to see if the produced material is rational. The point of a sanity test is to rule out certain classes of obviously false results, not to catch every possible error. A rule-of-thumb or back-of-the-envelope calculation may be checked to perform the test. The advantage of performing an initial sanity test is that of speedily evaluating basic function.

<span class="mw-page-title-main">Electronic test equipment</span>

Electronic test equipment is used to create signals and capture responses from electronic devices under test (DUTs). In this way, the proper operation of the DUT can be proven or faults in the device can be traced. Use of electronic test equipment is essential to any serious work on electronics systems.

Test-driven development (TDD) is a software development process relying on software requirements being converted to test cases before software is fully developed, and tracking all software development by repeatedly testing the software against all test cases. This is as opposed to software being developed first and test cases created later.

White-box testing is a method of software testing that tests internal structures or workings of an application, as opposed to its functionality. In white-box testing, an internal perspective of the system is used to design test cases. The tester chooses inputs to exercise paths through the code and determine the expected outputs. This is analogous to testing nodes in a circuit, e.g. in-circuit testing (ICT). White-box testing can be applied at the unit, integration and system levels of the software testing process. Although traditional testers tended to think of white-box testing as being done at the unit level, it is used for integration and system testing more frequently today. It can test paths within a unit, paths between units during integration, and between subsystems during a system–level test. Though this method of test design can uncover many errors or problems, it has the potential to miss unimplemented parts of the specification or missing requirements. Where white-box testing is design-driven, that is, driven exclusively by agreed specifications of how each component of software is required to behave, white-box test techniques can accomplish assessment for unimplemented or missing requirements.

Formal equivalence checking process is a part of electronic design automation (EDA), commonly used during the development of digital integrated circuits, to formally prove that two representations of a circuit design exhibit exactly the same behavior.

<span class="mw-page-title-main">Automatic test equipment</span> Apparatus used in hardware testing that carries out a series of tests automatically

Automatic test equipment or automated test equipment (ATE) is any apparatus that performs tests on a device, known as the device under test (DUT), equipment under test (EUT) or unit under test (UUT), using automation to quickly perform measurements and evaluate the test results. An ATE can be a simple computer-controlled digital multimeter, or a complicated system containing dozens of complex test instruments capable of automatically testing and diagnosing faults in sophisticated electronic packaged parts or on wafer testing, including system on chips and integrated circuits.

<span class="mw-page-title-main">Continuous integration</span> Software development practice based on frequent submission of granular changes

In software engineering, continuous integration (CI) is the practice of merging all developers' working copies to a shared mainline several times a day. Nowadays it is typically implemented in such a way that it triggers an automated build with testing. Grady Booch first proposed the term CI in his 1991 method, although he did not advocate integrating several times a day. Extreme programming (XP) adopted the concept of CI and did advocate integrating more than once per day – perhaps as many as tens of times per day.

Software project management is the process of planning and leading software projects. It is a sub-discipline of project management in which software projects are planned, implemented, monitored and controlled.

A test bench or testing workbench is an environment used to verify the correctness or soundness of a design or model.

Manual testing is the process of manually testing software for defects. It requires a tester to play the role of an end user where by they use most of the application's features to ensure correct behaviour. To guarantee completeness of testing, the tester often follows a written test plan that leads them through a set of important test cases.

In-circuit testing (ICT) is an example of white box testing where an electrical probe tests a populated printed circuit board (PCB), checking for shorts, opens, resistance, capacitance, and other basic quantities which will show whether the assembly was correctly fabricated. It may be performed with a "bed of nails" test fixture and specialist test equipment, or with a fixtureless in-circuit test setup.

iSCSI conformance testing is testing to determine whether an iSCSI Initiator/Target meets the iSCSI standard.

Circuit Check is an American company with about 225 employees and seven direct operations in six countries. Headquartered in Maple Grove, Minnesota, it is one of the largest manufacturers of electronic and mechanical test fixtures in North America, . The company also manufactures Automatic Test Equipment for end-of-line manufacturing test. The company uses either a Microsoft Excel-driven "CCITest" software platform, or the National Instruments LabVIEW software platform. They have a variety of clients in different industries which include: Automotive, Military & Aerospace, Medical, Industrial, and Computer Networking.

The Open Charge Point Protocol (OCPP) is an application protocol for communication between Electric vehicle (EV) charging stations and a central management system, also known as a charging station network, similar to cell phones and cell phone networks. The original version was written by Joury de Reuver and Franc Buve.

In software deployment, an environment or tier is a computer system or set of systems in which a computer program or software component is deployed and executed. In simple cases, such as developing and immediately executing a program on the same machine, there may be a single environment, but in industrial use, the development environment and production environment are separated, often with several stages in between. This structured release management process allows phased deployment (rollout), testing, and rollback in case of problems.

This article discusses a set of tactics useful in software testing. It is intended as a comprehensive list of tactical approaches to Software Quality Assurance (more widely colloquially known as Quality Assurance and general application of the test method.

References

  1. "Note UK". 15 April 2016.