Furanolactone

Last updated
The chemical structure of salvinorin A Salvinorin A structure.svg
The chemical structure of salvinorin A

A furanolactone is a heterocyclic chemical compound that contains both lactone and furan rings in its chemical structure.

Examples include:

Related Research Articles

<span class="mw-page-title-main">Salvinorin A</span> Chemical compound

Salvinorin A is the main active psychotropic molecule in Salvia divinorum. Salvinorin A is considered a dissociative hallucinogen.

<span class="mw-page-title-main">Nonactin</span> Chemical compound

Nonactin is a member of a family of naturally occurring cyclic ionophores known as the macrotetrolide antibiotics. The other members of this homologous family are monactin, dinactin, trinactin and tetranactin which are all neutral ionophoric substances and higher homologs of nonactin. Collectively, this class is known as the nactins. Nonactin is soluble in methanol, dichloromethane, ethyl acetate and DMSO, but insoluble in water.

<span class="mw-page-title-main">Salvinorin</span> Group of chemical compounds

Salvinorins are a group of natural chemical compounds and their structural analogs. Several salvinorins have been isolated from Salvia divinorum. They are classified as diterpenoid furanolactones. Salvinorin A is a hallucinogen with dissociative effects.

In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions. In some contexts, water of crystallization is the total mass of water in a substance at a given temperature and is mostly present in a definite (stoichiometric) ratio. Classically, "water of crystallization" refers to water that is found in the crystalline framework of a metal complex or a salt, which is not directly bonded to the metal cation.

<span class="mw-page-title-main">Boron trioxide</span> Chemical compound

Boron trioxide or diboron trioxide is the oxide of boron with the formula B2O3. It is a colorless transparent solid, almost always glassy (amorphous), which can be crystallized only with great difficulty. It is also called boric oxide or boria. It has many important industrial applications, chiefly in ceramics as a flux for glazes and enamels and in the production of glasses.

<span class="mw-page-title-main">Gold(III) chloride</span> Chemical compound

Gold(III) chloride, traditionally called auric chloride, is an inorganic compound of gold and chlorine with the molecular formula Au2Cl6. The "III" in the name indicates that the gold has an oxidation state of +3, typical for many gold compounds. It has two forms, the monohydrate (AuCl3·H2O) and the anhydrous form, which are both hygroscopic and light-sensitive solids. This compound is a dimer of AuCl3. This compound has a few uses, such as an oxidizing agent and for catalyzing various organic reactions.

1,2,4-Triazole (as ligand in coordination compounds, Htrz abbreviation is sometimes used) is one of a pair of isomeric chemical compounds with molecular formula C2H3N3, called triazoles, which have a five-membered ring of two carbon atoms and three nitrogen atoms. 1,2,4-Triazole and its derivatives find use in a wide variety of applications.

<span class="mw-page-title-main">2-Pyridone</span> Chemical compound

2-Pyridone is an organic compound with the formula C
5
H
4
NH(O)
. It is a colourless solid. It is well known to form hydrogen bonded dimers and it is also a classic case of a compound that exists as tautomers.

Phytoecdysteroids are plant-derived ecdysteroids. Phytoecdysteroids are a class of chemicals that plants synthesize for defense against phytophagous insects. These compounds are mimics of hormones used by arthropods in the molting process known as ecdysis. When insects eat the plants with these chemicals they may prematurely molt, lose weight, or suffer other metabolic damage and die.

<i>Tinospora cordifolia</i> Species of flowering plant

Tinospora cordifolia is a herbaceous vine of the family Menispermaceae indigenous to tropical regions of the Indian subcontinent. It has been used in Ayurveda to treat various disorders.

Clerodane diterpenes, sometimes referred to as clerodane diterpenoids, are a large group of secondary metabolites that have been isolated from several hundreds of different plant species, as well as fungi, bacteria and marine sponges. They are bicyclic terpenes that contain 20 carbons and a decalin core.

<span class="mw-page-title-main">Salvinorin B methoxymethyl ether</span> Chemical compound

Salvinorin B methoxymethyl ether is a semi-synthetic analogue of the natural product salvinorin A used in scientific research. It has a longer duration of action of around 2–3 hours, compared to less than 30 minutes for salvinorin A, and has increased affinity and potency at the κ-opioid receptor. It is prepared from salvinorin B. The crystal structure is almost superimposable with that of salvinorin A. Structures bound to the κ-opioid receptor have also been reported.

<span class="mw-page-title-main">Palmatine</span> Chemical compound

Palmatine is a protoberberine alkaloid found in several plants including Phellodendron amurense, Coptis Chinensis and Corydalis yanhusuo, Tinospora cordifolia, Tinospora sagittata, Phellodendron amurense, Stephania yunnanensis.

<span class="mw-page-title-main">Taxodone</span> Chemical compound

Taxodone is a naturally occurring diterpenoid found in Taxodium distichum, Rosmarinus officinalis (rosemary), several salvia species and other plants, along with its oxidized rearrangement product, taxodione. Taxodone and taxodione exhibit anticancer, antibacterial, antioxidant, antifungal, insecticide, and antifeedant activities.

<span class="mw-page-title-main">Tinosporide</span> Chemical compound

Tinosporide is a chemical compound classified as a diterpenoid and a furanolactone. It was first isolated from the plant Tinospora cordifolia, from which it derives its name. It has since been found in other plants of the genus Tinospora, such as Tinospora glabra.

Akhoury Purnendu Bhusan Sinha was an Indian solid state chemist who was the head of the Physical Chemistry Division of the National Chemical Laboratory, Pune. He is known for his theories on semiconductors and his studies on synthesis of manganites. He was an elected fellow of the Indian National Science Academy and the Indian Academy of Sciences. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded Sinha the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, in 1972, for his contributions to chemical sciences.

Usha Ranjan Ghatak (1931–2005) was an Indian synthetic organic chemist, stereochemist and the director of the Indian Association for the Cultivation of Science (IACS). He was known for his contributions in developing novel protocols of stereoselective synthesis of diterpenoids. He was an elected fellow of the Indian Academy of Sciences and the Indian National Science Academy. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, in 1974, for his contributions to chemical sciences.

<span class="mw-page-title-main">Transition metal chloride complex</span> Coordination complex

In chemistry, a transition metal chloride complex is a coordination complex that consists of a transition metal coordinated to one or more chloride ligand. The class of complexes is extensive.

<span class="mw-page-title-main">Transition metal nitrate complex</span> Compound of nitrate ligands

A transition metal nitrate complex is a coordination compound containing one or more nitrate ligands. Such complexes are common starting reagents for the preparation of other compounds.

Protactinium compounds are compounds containing the element protactinium. These compounds usually have protactinium in the +5 oxidation state, although these compounds can also exist in the +2, +3 and +4 oxidation states.

References

  1. Harding WW, Schmidt M, Tidgewell K, Kannan P, Holden KG, Dersch CM, Rothman RB, Prisinzano TE (2006). "Synthetic studies of neoclerodane diterpenes from Salvia divinorum: selective modification of the furan ring". Bioorg Med Chem Lett. 16 (12): 3170–4. doi:10.1016/j.bmcl.2006.03.062.
  2. Kohno H, Maeda M, Tanino M, Tsukio Y, Ueda N, Wada K, Sugie S, Mori H, Tanaka T (2002). "A bitter diterpenoid furanolactone columbin from Calumbae Radix inhibits azoxymethane-induced rat colon carcinogenesis". Cancer Lett. 183 (2): 131–139. doi:10.1016/s0304-3835(02)00159-3.
  3. Swaminathan K, Sinha UC, Ramakumar S, Bhatt RK, Sabata BK (1989). "Structure of columbin, a diterpenoid furanolactone from Tinospora cordifolia Miers" (PDF). Acta Crystallogr C. 45 (Pt 2): 300–303. doi:10.1107/s0108270188010583.
  4. Swaminathan, K.; Sinha, U. C.; Bhatt, R. K.; Sabata, B. K.; Tavale, S. S. (1989). "Structure of tinosporide, a diterpenoid furanolactone from Tinospora cordifolia Miers". Acta Crystallographica Section C. 45 (1): 134–136. Bibcode:1989AcCrC..45..134S. doi:10.1107/s0108270188009953. PMID   2610955.