GIR1 branching ribozyme

Last updated

The Lariat capping ribozyme (formerly called GIR1 branching ribozyme) is a ~180 nt ribozyme with an apparent resemblance to a group I ribozyme. [1] It is found within a complex type of group I introns also termed twin-ribozyme introns. [2] Rather than splicing, it catalyses a branching reaction in which the 2'OH of an internal residue is involved in a nucleophilic attack at a nearby phosphodiester bond. [3] As a result, the RNA is cleaved at an internal processing site (IPS), leaving a 3'OH and a downstream product with a 3 nt lariat at its 5' end. The lariat has the first and the third nucleotide joined by a 2',5' phosphodiester bond and is referred to as 'the lariat cap' because it caps an intron-encoded mRNA. The resulting lariat cap seems to contribute by increasing the half-life of the HE mRNA, [3] [4] thus conferring an evolutionary advantage to the HE.

Contents

Biological context

Schematic view of Dydimium iridis extrachromosomal rDNA and its twin-ribozyme system. WikiDiGIR-rDNA.png
Schematic view of Dydimium iridis extrachromosomal rDNA and its twin-ribozyme system.

The GIR1 ribozyme was originally discovered during the functional characterization of the introns from the extrachromosomal rDNA of the Didymium iridis protist. A combination of deletion and in vitro self-splicing analyses revealed a twin-ribozyme intron organization: two distinct ribozyme domains within the intron. [2]

Structural organization

The twin-ribozyme introns represent some of the most complex organized group I introns known and consist of a homing endonuclease gene (HEG: I-DirI homing endonuclease) embedded in two functionally distinct catalytic RNA domains. One of the catalytic RNAs is a conventional group I intron ribozyme (GIR2) responsible for the intron splicing and reverse splicing, as well as intron RNA circularization. The other catalytic RNA domain is the group I-like ribozyme (GIR1) directly involved in homing endonuclease mRNA maturation.

Catalytic activity

GIR1 Branching Ribozyme
GIR1 SS.png
Conserved secondary structure of GIR1
Identifiers
SymbolGIR1
Rfam RF01807
Other data
RNA typeIntron
Domain(s) Naegleria
PDB structures PDBe

In vitro, DiGIR1 catalyses three different reactions. The first one consists in hydrolysis of the scissile phosphate at the IPS site. This is the cleavage reaction observed with the full-length intron and several length variants with a relative low rate. The hydrolytic cleavage is irreversible and is considered an in vitro artefact resulting from misfolding of the catalytic site to present the branch nucleotide (BP) correctly for the reaction. The second reaction, the natural one, is the branching reaction, in which a transesterification at the IPS site results in the cleavage of the RNA with a 3'OH and a downstream lariat cap made by joining of the first and the third nucleotide by a 2'-5' phosphodiester bond. [3]

These products are the only products observed by analysis of cellular RNA. [4] [5] This branching reaction is in equilibrium with a third one: a ligation reaction. It is a very efficient reaction and it tends to mask the branching reaction during the in vitro branching experiments with the full-length intron and length variants that include more than 166 nucleotides upstream of the IPS.

Modelling structure of the Lariat capping (LC) Ribozyme

GIR1 models have been created using biochemical and mutational data. [6] The structure contains an extended substrate domain which contains a GoU pair. The pair differs from the typical group 1 ribozyme nucleophilic residue, the J8/7 region has been reduced. [6] These findings provide the basis for an evolutionary mechanism that accounts for the change from group I splicing ribozyme to the branching GIR1 architecture. This mechanism could potentially be applied to other large RNAs such as the ribonuclease P. [6]

Crystal structure of the Lariat Capping Ribozyme

The lariat capping ribozyme crystal structure (pdb- 4p95).png

The crystal structure of the LC ribozyme was recently published. [7] In brief, a circularly permutated (CP) ribozyme RNA was generated by in vitro transcription using T7 RNA polymerase. [8] The 5' and 3' generated by circular permutation are located at the natural ribozyme cleavage site. To allow transcription of this construct, optimized 5' hammerhead and HdV (Hepatitis delay Virus) ribozymes were flanked to the LC CP construct. [9]

The crystal structure of the LC ribozyme unravels how the regulatory domain formed by P2, P2.1 and P10 works. Two sets of tertiary interactions take place to constrain P2 and P2.1 allowing the formation of a 3-way junction, which acts as a receptor for nt A209. This snug fit interaction promotes formation of the catalytic site, provided that the lariat is pre-folded by the ribozyme core.

Related Research Articles

<span class="mw-page-title-main">RNA splicing</span> Process in molecular biology

RNA splicing is a process in molecular biology where a newly-made precursor messenger RNA (pre-mRNA) transcript is transformed into a mature messenger RNA (mRNA). It works by removing all the introns and splicing back together exons. For nuclear-encoded genes, splicing occurs in the nucleus either during or immediately after transcription. For those eukaryotic genes that contain introns, splicing is usually needed to create an mRNA molecule that can be translated into protein. For many eukaryotic introns, splicing occurs in a series of reactions which are catalyzed by the spliceosome, a complex of small nuclear ribonucleoproteins (snRNPs). There exist self-splicing introns, that is, ribozymes that can catalyze their own excision from their parent RNA molecule. The process of transcription, splicing and translation is called gene expression, the central dogma of molecular biology.

<span class="mw-page-title-main">Ribozyme</span> Type of RNA molecules

Ribozymes are RNA molecules that have the ability to catalyze specific biochemical reactions, including RNA splicing in gene expression, similar to the action of protein enzymes. The 1982 discovery of ribozymes demonstrated that RNA can be both genetic material and a biological catalyst, and contributed to the RNA world hypothesis, which suggests that RNA may have been important in the evolution of prebiotic self-replicating systems.

<span class="mw-page-title-main">Exonuclease</span> Class of enzymes; type of nuclease

Exonucleases are enzymes that work by cleaving nucleotides one at a time from the end (exo) of a polynucleotide chain. A hydrolyzing reaction that breaks phosphodiester bonds at either the 3′ or the 5′ end occurs. Its close relative is the endonuclease, which cleaves phosphodiester bonds in the middle (endo) of a polynucleotide chain. Eukaryotes and prokaryotes have three types of exonucleases involved in the normal turnover of mRNA: 5′ to 3′ exonuclease (Xrn1), which is a dependent decapping protein; 3′ to 5′ exonuclease, an independent protein; and poly(A)-specific 3′ to 5′ exonuclease.

Deoxyribozymes, also called DNA enzymes, DNAzymes, or catalytic DNA, are DNA oligonucleotides that are capable of performing a specific chemical reaction, often but not always catalytic. This is similar to the action of other biological enzymes, such as proteins or ribozymes . However, in contrast to the abundance of protein enzymes in biological systems and the discovery of biological ribozymes in the 1980s, there is only little evidence for naturally occurring deoxyribozymes. Deoxyribozymes should not be confused with DNA aptamers which are oligonucleotides that selectively bind a target ligand, but do not catalyze a subsequent chemical reaction.

<span class="mw-page-title-main">Post-transcriptional modification</span> RNA processing within a biological cell

Transcriptional modification or co-transcriptional modification is a set of biological processes common to most eukaryotic cells by which an RNA primary transcript is chemically altered following transcription from a gene to produce a mature, functional RNA molecule that can then leave the nucleus and perform any of a variety of different functions in the cell. There are many types of post-transcriptional modifications achieved through a diverse class of molecular mechanisms.

Small nuclear RNA (snRNA) is a class of small RNA molecules that are found within the splicing speckles and Cajal bodies of the cell nucleus in eukaryotic cells. The length of an average snRNA is approximately 150 nucleotides. They are transcribed by either RNA polymerase II or RNA polymerase III. Their primary function is in the processing of pre-messenger RNA (hnRNA) in the nucleus. They have also been shown to aid in the regulation of transcription factors or RNA polymerase II, and maintaining the telomeres.

<span class="mw-page-title-main">Ribonuclease P</span> Class of enzymes

Ribonuclease P is a type of ribonuclease which cleaves RNA. RNase P is unique from other RNases in that it is a ribozyme – a ribonucleic acid that acts as a catalyst in the same way that a protein-based enzyme would. Its function is to cleave off an extra, or precursor, sequence of RNA on tRNA molecules. Further, RNase P is one of two known multiple turnover ribozymes in nature, the discovery of which earned Sidney Altman and Thomas Cech the Nobel Prize in Chemistry in 1989: in the 1970s, Altman discovered the existence of precursor tRNA with flanking sequences and was the first to characterize RNase P and its activity in processing of the 5' leader sequence of precursor tRNA. Recent findings also reveal that RNase P has a new function. It has been shown that human nuclear RNase P is required for the normal and efficient transcription of various small noncoding RNAs, such as tRNA, 5S rRNA, SRP RNA and U6 snRNA genes, which are transcribed by RNA polymerase III, one of three major nuclear RNA polymerases in human cells.

In molecular biology, a twintron is an intron-within-intron excised by sequential splicing reactions. A twintron is presumably formed by the insertion of a mobile intron into an existing intron.

<span class="mw-page-title-main">Group II intron</span> Class of self-catalyzing ribozymes

Group II introns are a large class of self-catalytic ribozymes and mobile genetic elements found within the genes of all three domains of life. Ribozyme activity can occur under high-salt conditions in vitro. However, assistance from proteins is required for in vivo splicing. In contrast to group I introns, intron excision occurs in the absence of GTP and involves the formation of a lariat, with an A-residue branchpoint strongly resembling that found in lariats formed during splicing of nuclear pre-mRNA. It is hypothesized that pre-mRNA splicing may have evolved from group II introns, due to the similar catalytic mechanism as well as the structural similarity of the Group II Domain V substructure to the U6/U2 extended snRNA. Finally, their ability to site-specifically insert into DNA sites has been exploited as a tool for biotechnology. For example, group II introns can be modified to make site-specific genome insertions and deliver cargo DNA such as reporter genes or lox sites

<span class="mw-page-title-main">I-CreI</span>

I-CreI is a homing endonuclease whose gene was first discovered in the chloroplast genome of Chlamydomonas reinhardtii, a species of unicellular green algae. It is named for the facts that: it resides in an Intron; it was isolated from Clamydomonas reinhardtii; it was the first (I) such gene isolated from C. reinhardtii. Its gene resides in a group I intron in the 23S ribosomal RNA gene of the C. reinhardtii chloroplast, and I-CreI is only expressed when its mRNA is spliced from the primary transcript of the 23S gene. I-CreI enzyme, which functions as a homodimer, recognizes a 22-nucleotide sequence of duplex DNA and cleaves one phosphodiester bond on each strand at specific positions. I-CreI is a member of the LAGLIDADG family of homing endonucleases, all of which have a conserved LAGLIDADG amino acid motif that contributes to their associative domains and active sites. When the I-CreI-containing intron encounters a 23S allele lacking the intron, I-CreI enzyme "homes" in on the "intron-minus" allele of 23S and effects its parent intron's insertion into the intron-minus allele. Introns with this behavior are called mobile introns. Because I-CreI provides for its own propagation while conferring no benefit on its host, it is an example of selfish DNA.

<span class="mw-page-title-main">Homing endonuclease</span> Type of enzyme

The homing endonucleases are a collection of endonucleases encoded either as freestanding genes within introns, as fusions with host proteins, or as self-splicing inteins. They catalyze the hydrolysis of genomic DNA within the cells that synthesize them, but do so at very few, or even singular, locations. Repair of the hydrolyzed DNA by the host cell frequently results in the gene encoding the homing endonuclease having been copied into the cleavage site, hence the term 'homing' to describe the movement of these genes. Homing endonucleases can thereby transmit their genes horizontally within a host population, increasing their allele frequency at greater than Mendelian rates.

<span class="mw-page-title-main">Hammerhead ribozyme</span>

The hammerhead ribozyme is an RNA motif that catalyzes reversible cleavage and ligation reactions at a specific site within an RNA molecule. It is one of several catalytic RNAs (ribozymes) known to occur in nature. It serves as a model system for research on the structure and properties of RNA, and is used for targeted RNA cleavage experiments, some with proposed therapeutic applications. Named for the resemblance of early secondary structure diagrams to a hammerhead shark, hammerhead ribozymes were originally discovered in two classes of plant virus-like RNAs: satellite RNAs and viroids. They are also known in some classes of retrotransposons, including the retrozymes. The hammerhead ribozyme motif has been ubiquitously reported in lineages across the tree of life.

<span class="mw-page-title-main">VS ribozyme</span>

The Varkud satellite (VS) ribozyme is an RNA enzyme that carries out the cleavage of a phosphodiester bond.

<span class="mw-page-title-main">Group I catalytic intron</span> Large self-splicing ribozymes

Group I introns are large self-splicing ribozymes. They catalyze their own excision from mRNA, tRNA and rRNA precursors in a wide range of organisms. The core secondary structure consists of nine paired regions (P1-P9). These fold to essentially two domains – the P4-P6 domain and the P3-P9 domain. The secondary structure mark-up for this family represents only this conserved core. Group I introns often have long open reading frames inserted in loop regions.

<span class="mw-page-title-main">Cyclic di-GMP-II riboswitch</span>

Cyclic di-GMP-II riboswitches form a class of riboswitches that specifically bind cyclic di-GMP, a second messenger used in multiple bacterial processes such as virulence, motility and biofilm formation. Cyclic di-GMP II riboswitches are structurally unrelated to cyclic di-GMP-I riboswitches, though they have the same function.

Numerous key discoveries in biology have emerged from studies of RNA, including seminal work in the fields of biochemistry, genetics, microbiology, molecular biology, molecular evolution, and structural biology. As of 2010, 30 scientists have been awarded Nobel Prizes for experimental work that includes studies of RNA. Specific discoveries of high biological significance are discussed in this article.

tRNA-intron lyase is an enzyme. As an endonuclease enzyme, tRNA-intron lyase is responsible for splicing phosphodiester bonds within non-coding ribonucleic acid chains. These non-coding RNA molecules form tRNA molecules after being processed, and this is dependent on tRNA-intron lyase to splice the pretRNA. tRNA processing is an important post-transcriptional modification necessary for tRNA maturation because it locates and removes introns in the pretRNA. This enzyme catalyses the following chemical reaction:

<span class="mw-page-title-main">RNA hydrolysis</span>

RNA hydrolysis is a reaction in which a phosphodiester bond in the sugar-phosphate backbone of RNA is broken, cleaving the RNA molecule. RNA is susceptible to this base-catalyzed hydrolysis because the ribose sugar in RNA has a hydroxyl group at the 2’ position. This feature makes RNA chemically unstable compared to DNA, which does not have this 2’ -OH group and thus is not susceptible to base-catalyzed hydrolysis.

<span class="mw-page-title-main">Hatchet ribozyme</span> Self-cleaving ribozyme

Background: The hatchet ribozyme is an RNA structure that catalyzes its own cleavage at a specific site. In other words, it is a self-cleaving ribozyme. Hatchet ribozymes were discovered by a bioinformatics strategy as RNAs Associated with Genes Associated with Twister and Hammerhead ribozymes, or RAGATH.

References

  1. Johansen S, Einvik C, Nielsen H (September 2002). "DiGIR1 and NaGIR1: naturally occurring group I-like ribozymes with unique core organization and evolved biological role". Biochimie. 84 (9): 905–12. doi:10.1016/S0300-9084(02)01443-8. PMID   12458083.
  2. 1 2 Johansen S, Vogt VM (February 1994). "An intron in the nuclear ribosomal DNA of Didymium iridis codes for a group I ribozyme and a novel ribozyme that cooperate in self-splicing". Cell. 76 (4): 725–34. doi:10.1016/0092-8674(94)90511-8. PMID   8124711. S2CID   45868519.
  3. 1 2 3 Nielsen H, Westhof E, Johansen S (September 2005). "An mRNA is capped by a 2', 5' lariat catalyzed by a group I-like ribozyme". Science. 309 (5740): 1584–7. Bibcode:2005Sci...309.1584N. doi:10.1126/science.1113645. PMID   16141078. S2CID   37002071.
  4. 1 2 Vader A, Johansen S, Nielsen H (December 2002). "The group I-like ribozyme DiGIR1 mediates alternative processing of pre-rRNA transcripts in Didymium iridis". European Journal of Biochemistry. 269 (23): 5804–12. doi: 10.1046/j.1432-1033.2002.03283.x . PMID   12444968.
  5. Vader A, Nielsen H, Johansen S (February 1999). "In vivo expression of the nucleolar group I intron-encoded I-dirI homing endonuclease involves the removal of a spliceosomal intron". The EMBO Journal. 18 (4): 1003–13. doi:10.1093/emboj/18.4.1003. PMC   1171192 . PMID   10022842.
  6. 1 2 3 Beckert B, Nielsen H, Einvik C, Johansen SD, Westhof E, Masquida B (February 2008). "Molecular modelling of the GIR1 branching ribozyme gives new insight into evolution of structurally related ribozymes". The EMBO Journal. 27 (4): 667–78. doi:10.1038/emboj.2008.4. PMC   2219692 . PMID   18219270.
  7. Meyer, M.; Nielsen, H.; Olieric, V.; Roblin, P.; Johansen, S. D.; Westhof, E.; Masquida, B. (2014-05-27). "Speciation of a group I intron into a lariat capping ribozyme". Proceedings of the National Academy of Sciences. 111 (21): 7659–7664. Bibcode:2014PNAS..111.7659M. doi: 10.1073/pnas.1322248111 . ISSN   0027-8424. PMC   4040574 . PMID   24821772.
  8. Beckert, Bertrand; Masquida, Benoît (2011), Nielsen, Henrik (ed.), "Synthesis of RNA by in Vitro Transcription", RNA: Methods and Protocols, Methods in Molecular Biology, vol. 703, Humana Press, pp. 29–41, doi:10.1007/978-1-59745-248-9_3, ISBN   978-1-59745-248-9, PMID   21125481, S2CID   26196836
  9. Meyer, Mélanie; Masquida, Benoît (2014), Waldsich, Christina (ed.), "Cis-Acting 5' Hammerhead Ribozyme Optimization for in Vitro Transcription of Highly Structured RNAs", RNA Folding: Methods and Protocols, Methods in Molecular Biology, vol. 1086, Humana Press, pp. 21–40, doi:10.1007/978-1-62703-667-2_2, ISBN   978-1-62703-667-2, PMID   24136596

Further reading