GIS in environmental contamination

Last updated

GIS in environmental contamination is the use of GIS software in mapping out the contaminants in soil and water using the spatial interpolation tools from GIS. [1] [2] [3] Spatial interpolation allows for more efficient approach to remediation and monitoring of soil and water contaminants. Soil and water contamination by metals and other contaminants have become a major environmental problem after the industrialization across many parts of the world. [4] As a result, environmental agencies are placed in charge in remediating, monitoring, and mitigating the soil contamination sites. GIS is used to monitor the sites for metal contaminants in the soil, and based on the GIS analysis, highest risk sites are identified in which majority of the remediation and monitoring takes place.

Contents

GIS in soil contamination

Soil contamination from heavy elements can be found in the urban environments, which can be attributed to the transportation and industries along with the background levels (minerals-leaching heavy elements from weathering). Also, some of the most soil contaminated areas are around the mines such as the ones in Slovenia, Bosnia and Herzegovina, and in United States (Sulphur Bank Superfund Site, in California). [5] [6] [7] In a study area, GIS is used for the analysis of spatial relationship of the contaminants within the soil.

Soil contamination in Slovenia

In Idrija, Slovenia, where the world’s second largest mercury (Hg) mine operated has a significant amount of Hg emissions into the atmosphere by a surface process of adsorption of Hg from and to soil particles surfaces, which results in a diffusion of Hg through the pores of soil. [8] To calculate the emission flux for Hg, a Hg emission model was developed:

lnFHg=Ea/(R*Ts )+n*ln[Hg]s+m+0.003*Rz Equation 1

in which the FHg is the flux of Hg emission, Ea is the activation energy, R is the gas constant, Ts is the soil temperature, n and m are constants, [Hg]s is the Hg concentration, and 0.003* Rz accounts for the solar radiation since the solar radiation has the effect on the temperature, hence the solar radiation has the effect on the emission flux of Hg. [9] Once the Hg concentration data was gathered, a schematic model has been prepared for GIS input, which consisted of a digital elevation model (DEM), a satellite land use map, and EARS data. [10] [11] [12] [13] Using the inverse distance weighted (IDW) method from geostatistical tools in ArcGIS 9.3, a raster model of the Hg concentration has been produced for the Idrija area. [14] [15] [16] [17]

DRASTIC Summary Index Score modeled using GIS

Under certain hydrological parameters, some aquifers are more prone to contamination than other aquifers. The parameters that are taken into consideration when calculating the vulnerability of aquifers to contamination are: depth to water (factor d), net recharge (factor r), aquifer media (factor a), soil media (factor s), topography (factor t), impact of the vadose zone (factor i), and the hydraulic conductivity (factor c), which together spell out DRASTIC. [18] [19] Furthermore, there is a weighting factor associated with each of the parameters that can range from one to five. In addition, the lower the numbers for the DRASTIC index after the assessment of the aquifer, than the lower the risk of aquifer contamination in that area. [20] These seven parameters derive DRASTIC summary index score, which determines which are more prone to contamination than other. The significance of the DRASTIC summary index score is that it shows areas that are more prone; as a result, the state or local authorities depending on the scale will place necessary measures in place that would prevent or mitigate contamination of the water supply. Using GIS, a map was developed for the seven counties (Hillsborough, Polk, Manatee, Hardee, Sarasota, DeSoto, and Charlotte) in Florida, which shows the DRASTIC summary index score for the Floridan Aquifer System, Surficial Aquifer System, and Other Rocks aquifer. The developed map is a combination of multiple layers that are stacked on top of each other as shown in Figure 1.

Related Research Articles

<span class="mw-page-title-main">Geographic information system</span> System to capture, manage and present geographic data

A geographic information system (GIS) consists of integrated computer hardware and software that store, manage, analyze, edit, output, and visualize geographic data. Much of this often happens within a spatial database, however, this is not essential to meet the definition of a GIS. In a broader sense, one may consider such a system also to include human users and support staff, procedures and workflows, the body of knowledge of relevant concepts and methods, and institutional organizations.

<span class="mw-page-title-main">Aquifer</span> Underground layer of water-bearing permeable rock

An aquifer is an underground layer of water-bearing, permeable rock, rock fractures, or unconsolidated materials. Groundwater from aquifers can be extracted using a water well. Water from aquifers can be sustainably harvested through the use of qanats. Aquifers vary greatly in their characteristics. The study of water flow in aquifers and the characterization of aquifers is called hydrogeology. Related terms include aquitard, which is a bed of low permeability along an aquifer, and aquiclude, which is a solid, impermeable area underlying or overlying an aquifer, the pressure of which could create a confined aquifer. The classification of aquifers is as follows: Saturated versus unsaturated; aquifers versus aquitards; confined versus unconfined; isotropic versus anisotropic; porous, karst, or fractured; transboundary aquifer.

<span class="mw-page-title-main">Groundwater</span> Water located beneath the ground surface

Groundwater is the water present beneath Earth's surface in rock and soil pore spaces and in the fractures of rock formations. About 30 percent of all readily available freshwater in the world is groundwater. A unit of rock or an unconsolidated deposit is called an aquifer when it can yield a usable quantity of water. The depth at which soil pore spaces or fractures and voids in rock become completely saturated with water is called the water table. Groundwater is recharged from the surface; it may discharge from the surface naturally at springs and seeps, and can form oases or wetlands. Groundwater is also often withdrawn for agricultural, municipal, and industrial use by constructing and operating extraction wells. The study of the distribution and movement of groundwater is hydrogeology, also called groundwater hydrology.

<span class="mw-page-title-main">Water quality</span> Assessment against standards for use

Water quality refers to the chemical, physical, and biological characteristics of water based on the standards of its usage. It is most frequently used by reference to a set of standards against which compliance, generally achieved through treatment of the water, can be assessed. The most common standards used to monitor and assess water quality convey the health of ecosystems, safety of human contact, extent of water pollution and condition of drinking water. Water quality has a significant impact on water supply and oftentimes determines supply options.

<span class="mw-page-title-main">Environmental remediation</span> Removal of pollution from soil, groundwater etc.

Environmental remediation deals with the removal of pollution or contaminants from environmental media such as soil, groundwater, sediment, or surface water. Remedial action is generally subject to an array of regulatory requirements, and may also be based on assessments of human health and ecological risks where no legislative standards exist, or where standards are advisory.

<span class="mw-page-title-main">Hydrogeology</span> Study of the distribution and movement of groundwater

Hydrogeology is the area of geology that deals with the distribution and movement of groundwater in the soil and rocks of the Earth's crust. The terms groundwater hydrology, geohydrology, and hydrogeology are often used interchangeably.

<span class="mw-page-title-main">Environmental chemistry</span> Scientific study of the chemical and phenomena that occur in natural places

Environmental chemistry is the scientific study of the chemical and biochemical phenomena that occur in natural places. It should not be confused with green chemistry, which seeks to reduce potential pollution at its source. It can be defined as the study of the sources, reactions, transport, effects, and fates of chemical species in the air, soil, and water environments; and the effect of human activity and biological activity on these. Environmental chemistry is an interdisciplinary science that includes atmospheric, aquatic and soil chemistry, as well as heavily relying on analytical chemistry and being related to environmental and other areas of science.

<span class="mw-page-title-main">Carson River</span> River in Nevada, United States

The Carson River is a northwestern Nevada river that empties into the Carson Sink, an endorheic basin. The main stem of the river is 131 miles (211 km) long although the addition of the East Fork makes the total length 205 miles (330 km), traversing five counties: Alpine County in California and Douglas, Storey, Lyon, and Churchill Counties in Nevada, as well as the Consolidated Municipality of Carson City, Nevada. The river is named for Kit Carson, who guided John C. Frémont's expedition westward up the Carson Valley and across Carson Pass in winter, 1844. The river made the National Priorities List (NPL) on October 30, 1990 as the Carson River Mercury Superfund site (CRMS) due to investigations that showed trace amounts of mercury in the wildlife and watershed sediments.

<span class="mw-page-title-main">Phytoremediation</span> Decontamination technique using living plants

Phytoremediation technologies use living plants to clean up soil, air and water contaminated with hazardous contaminants. It is defined as "the use of green plants and the associated microorganisms, along with proper soil amendments and agronomic techniques to either contain, remove or render toxic environmental contaminants harmless". The term is an amalgam of the Greek phyto (plant) and Latin remedium. Although attractive for its cost, phytoremediation has not been demonstrated to redress any significant environmental challenge to the extent that contaminated space has been reclaimed.

<span class="mw-page-title-main">Soil contamination</span> Pollution of land by human-made chemicals or other alteration

Soil contamination, soil pollution, or land pollution as a part of land degradation is caused by the presence of xenobiotic (human-made) chemicals or other alteration in the natural soil environment. It is typically caused by industrial activity, agricultural chemicals or improper disposal of waste. The most common chemicals involved are petroleum hydrocarbons, polynuclear aromatic hydrocarbons, solvents, pesticides, lead, and other heavy metals. Contamination is correlated with the degree of industrialization and intensity of chemical substance. The concern over soil contamination stems primarily from health risks, from direct contact with the contaminated soil, vapour from the contaminants, or from secondary contamination of water supplies within and underlying the soil. Mapping of contaminated soil sites and the resulting cleanups are time-consuming and expensive tasks, and require expertise in geology, hydrology, chemistry, computer modeling, and GIS in Environmental Contamination, as well as an appreciation of the history of industrial chemistry.

<span class="mw-page-title-main">Surface runoff</span> Flow of excess rainwater not infiltrating in the ground over its surface

Surface runoff is the unconfined flow of water over the ground surface, in contrast to channel runoff. It occurs when excess rainwater, stormwater, meltwater, or other sources, can no longer sufficiently rapidly infiltrate in the soil. This can occur when the soil is saturated by water to its full capacity, and the rain arrives more quickly than the soil can absorb it. Surface runoff often occurs because impervious areas do not allow water to soak into the ground. Furthermore, runoff can occur either through natural or human-made processes.

David William Rhind is a British geographer and expert on geographic information systems (GIS). He was Vice-Chancellor of City University, London, until July 2007.

<span class="mw-page-title-main">Well</span> Excavation or structure to provide access to groundwater

A well is an excavation or structure created in the ground by digging, driving, or drilling to access liquid resources, usually water. The oldest and most common kind of well is a water well, to access groundwater in underground aquifers. The well water is drawn up by a pump, or using containers, such as buckets or large water bags that are raised mechanically or by hand. Water can also be injected back into the aquifer through the well. Wells were first constructed at least eight thousand years ago and historically vary in construction from a simple scoop in the sediment of a dry watercourse to the qanats of Iran, and the stepwells and sakiehs of India. Placing a lining in the well shaft helps create stability, and linings of wood or wickerwork date back at least as far as the Iron Age.

<span class="mw-page-title-main">Rhizofiltration</span>

Rhizofiltration is a form of phytoremediation that involves filtering contaminated groundwater, surface water and wastewater through a mass of roots to remove toxic substances or excess nutrients.

<span class="mw-page-title-main">Environmental monitoring</span> Monitoring of the quality of the environment

Environmental monitoring describes the processes and activities that need to take place to characterize and monitor the quality of the environment. Environmental monitoring is used in the preparation of environmental impact assessments, as well as in many circumstances in which human activities carry a risk of harmful effects on the natural environment. All monitoring strategies and programs have reasons and justifications which are often designed to establish the current status of an environment or to establish trends in environmental parameters. In all cases, the results of monitoring will be reviewed, analyzed statistically, and published. The design of a monitoring program must therefore have regard to the final use of the data before monitoring starts.

<span class="mw-page-title-main">Environmental effects of mining</span> Environmental problems from uncontrolled mining

Environmental effects of mining can occur at local, regional, and global scales through direct and indirect mining practices. Mining can cause in erosion, sinkholes, loss of biodiversity, or the contamination of soil, groundwater, and surface water by chemicals emitted from mining processes. These processes also affect the atmosphere through carbon emissions which contributes to climate change. Some mining methods may have such significant environmental and public health effects that mining companies in some countries are required to follow strict environmental and rehabilitation codes to ensure that the mined area returns to its original state.

<span class="mw-page-title-main">New Idria Mercury Mine</span> Quicksilver Mine in California, United States

The New Idria Mercury Mine encompasses 8,000 acres of land in the Diablo Mountain range, incorporating the town of Idria in San Benito County, California. Idria, initially named New Idria, is situated at 36°25′01″N120°40′24″W and 2440 feet (680m) above mean sea level. The area was, in the past, recorded in the US Census Bureau as a rural community; however, Idria has become a ghost town since the closing of once lucrative mining operations in the early 1970s.

<span class="mw-page-title-main">Groundwater pollution</span> Ground released seep into groundwater

Groundwater pollution occurs when pollutants are released to the ground and make their way into groundwater. This type of water pollution can also occur naturally due to the presence of a minor and unwanted constituent, contaminant, or impurity in the groundwater, in which case it is more likely referred to as contamination rather than pollution. Groundwater pollution can occur from on-site sanitation systems, landfill leachate, effluent from wastewater treatment plants, leaking sewers, petrol filling stations, hydraulic fracturing (fracking) or from over application of fertilizers in agriculture. Pollution can also occur from naturally occurring contaminants, such as arsenic or fluoride. Using polluted groundwater causes hazards to public health through poisoning or the spread of disease.

The Chernobyl disaster remains the major and most detrimental nuclear catastrophe which completely altered the radioactive background of the Northern Hemisphere. It happened in April 1986 on the territory of the former Soviet Union. The catastrophe led to the increase of radiation in nearly one million times in some parts of Europe and North America compared to the pre-disaster state Air, water, soils, vegetation and animals were contaminated to a varying degree. Apart from Ukraine and Belarus as the worst hit areas, adversely affected countries included Russia, Austria, Finland and Sweden. The full impact on the aquatic systems, including primarily adjacent valleys of Pripyat river and Dnieper river, are still unexplored.

<span class="mw-page-title-main">Groundwater contamination by pharmaceuticals</span>

Groundwater contamination by pharmaceuticals, which belong to the category of contaminants of emerging concern (CEC) or emerging organic pollutants (EOP), has been receiving increasing attention in the fields of environmental engineering, hydrology and hydrogeochemistry since the last decades of the twentieth century.

References

  1. Demers, M. N. (2003). Fundamentals of Geographic Information Systems. John Wiley & Sons, Inc.
  2. Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2005). Geographic Information Systems and Science. John Wiley & Sons Ltd.
  3. Kocman, D., & Horvat, M. (2011). Non-point source mercury emission from the Idrija Hg-mine region: GIS mercury emission model. Journal of Environmental Management, 1–9.
  4. Jasminka, A., & Robert, S. (2011). Distribution of chemical elements in an old metallurgical area, Zenica. Geoderma, 71–85.
  5. Jasminka, A., & Robert, S. (2011). Distribution of chemical elements in an old metallurgical area, Zenica. Geoderma, 71–85.
  6. Nacht, D. M., & al., e. (2004). Atmospheric Mercury Emissions and Speciation at the Sulphur Bank Mercury Mine Superfund Site, Northern California. Environmental Science Technology, 1977–1983.
  7. Kocman, D., & Horvat, M. (2011). Non-point source mercury emission from the Idrija Hg-mine region: GIS mercury emission model. Journal of Environmental Management, 1–9.
  8. Kocman, D., & Horvat, M. (2011). Non-point source mercury emission from the Idrija Hg-mine region: GIS mercury emission model. Journal of Environmental Management, 1–9.
  9. Kocman, D., & Horvat, M. (2011). Non-point source mercury emission from the Idrija Hg-mine region: GIS mercury emission model. Journal of Environmental Management, 1–9.
  10. Kocman, D., & Horvat, M. (2011). Non-point source mercury emission from the Idrija Hg-mine region: GIS mercury emission model. Journal of Environmental Management, 1–9.
  11. Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2008). Remote Sensing and Image Interpretation. John Wiley & Sons, Inc.
  12. Demers, M. N. (2003). Fundamentals of Geographic Information Systems. John Wiley & Sons, Inc.
  13. Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2005). Geographic Information Systems and Science. John Wiley & Sons Ltd.
  14. Kocman, D., & Horvat, M. (2011). Non-point source mercury emission from the Idrija Hg-mine region: GIS mercury emission model. Journal of Environmental Management, 1–9.
  15. Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2005). Geographic Information Systems and Science. John Wiley & Sons Ltd.
  16. Gorr, W. L., & Jurland, K. S. (2008). GIS Tutorial . Redlands: ESRI.
  17. Demers, M. N. (2003). Fundamentals of Geographic Information Systems. John Wiley & Sons, Inc.
  18. Bukowski, P., Bromek, T., & Augustyniak, I. (2006). Using the DRASTIC System to Assess the Vulnerability of Ground Water to Pollution in Mined Areas of the Upper Silesian Coal Basin. Mine Water and the Environment, 15–22.
  19. Drastic Coverage of Intermediate Aquifer System. (2002, November 1). Retrieved April 17, 2011, from Florida Geographic Data Library: http://www.fgdl.org/metadataexplorer/explorer.jsp
  20. Bukowski, P., Bromek, T., & Augustyniak, I. (2006). Using the DRASTIC System to Assess the Vulnerability of Ground Water to Pollution in Mined Areas of the Upper Silesian Coal Basin. Mine Water and the Environment, 15–22.