Gabriel's theorem

Last updated

In mathematics, Gabriel's theorem, proved by Pierre Gabriel, classifies the quivers of finite type in terms of Dynkin diagrams.

Statement

A quiver is of finite type if it has only finitely many isomorphism classes of indecomposable representations. Gabriel (1972) classified all quivers of finite type, and also their indecomposable representations. More precisely, Gabriel's theorem states that:

  1. A (connected) quiver is of finite type if and only if its underlying graph (when the directions of the arrows are ignored) is one of the ADE Dynkin diagrams: , , , , .
  2. The indecomposable representations are in a one-to-one correspondence with the positive roots of the root system of the Dynkin diagram.

Dlab & Ringel (1973) found a generalization of Gabriel's theorem in which all Dynkin diagrams of finite-dimensional semisimple Lie algebras occur. Victor Kac extended these results to all quivers, not only of Dynkin type, relating their indecomposable representations to the roots of Kac–Moody algebras.

Related Research Articles

<span class="mw-page-title-main">Dynkin diagram</span> Pictorial representation of symmetry

In the mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of graph with some edges doubled or tripled. Dynkin diagrams arise in the classification of semisimple Lie algebras over algebraically closed fields, in the classification of Weyl groups and other finite reflection groups, and in other contexts. Various properties of the Dynkin diagram correspond to important features of the associated Lie algebra.

In mathematics, especially representation theory, a quiver is another name for a multidigraph; that is, a directed graph where loops and multiple arrows between two vertices are allowed. Quivers are commonly used in representation theory: a representation V of a quiver assigns a vector space V(x) to each vertex x of the quiver and a linear map V(a) to each arrow a.

<span class="mw-page-title-main">ADE classification</span>

In mathematics, the ADE classification is a situation where certain kinds of objects are in correspondence with simply laced Dynkin diagrams. The question of giving a common origin to these classifications, rather than a posteriori verification of a parallelism, was posed in. The complete list of simply laced Dynkin diagrams comprises

In mathematics, and in particular in the mathematical background of string theory, the Goddard–Thorn theorem is a theorem describing properties of a functor that quantizes bosonic strings. It is named after Peter Goddard and Charles Thorn.

<span class="mw-page-title-main">Reductive group</span>

In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation that has a finite kernel and is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and (more generally) semisimple algebraic groups are reductive.

In mathematics, a Kac–Moody algebra is a Lie algebra, usually infinite-dimensional, that can be defined by generators and relations through a generalized Cartan matrix. These algebras form a generalization of finite-dimensional semisimple Lie algebras, and many properties related to the structure of a Lie algebra such as its root system, irreducible representations, and connection to flag manifolds have natural analogues in the Kac–Moody setting.

In mathematics, the term Cartan matrix has three meanings. All of these are named after the French mathematician Élie Cartan. Amusingly, the Cartan matrices in the context of Lie algebras were first investigated by Wilhelm Killing, whereas the Killing form is due to Cartan.

In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. Given an affine Lie algebra, one can also form the associated affine Kac-Moody algebra, as described below. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities.

<span class="mw-page-title-main">Exceptional object</span>

Many branches of mathematics study objects of a given type and prove a classification theorem. A common theme is that the classification results in a number of series of objects and a finite number of exceptions — often with desirable properties — that do not fit into any series. These are known as exceptional objects. In many cases, these exceptional objects play a further and important role in the subject. Furthermore, the exceptional objects in one branch of mathematics often relate to the exceptional objects in others.

In mathematics, the Hall algebra is an associative algebra with a basis corresponding to isomorphism classes of finite abelian p-groups. It was first discussed by Steinitz (1901) but forgotten until it was rediscovered by Philip Hall, both of whom published no more than brief summaries of their work. The Hall polynomials are the structure constants of the Hall algebra. The Hall algebra plays an important role in the theory of Masaki Kashiwara and George Lusztig regarding canonical bases in quantum groups. Ringel (1990) generalized Hall algebras to more general categories, such as the category of representations of a quiver.

<span class="mw-page-title-main">Representation theory</span> Branch of mathematics that studies abstract algebraic structures

Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations. The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories.

In category theory, a branch of mathematics, a Krull–Schmidt category is a generalization of categories in which the Krull–Schmidt theorem holds. They arise, for example, in the study of finite-dimensional modules over an algebra.

In algebra, Auslander–Reiten theory studies the representation theory of Artinian rings using techniques such as Auslander–Reiten sequences and Auslander–Reiten quivers. Auslander–Reiten theory was introduced by Maurice Auslander and Idun Reiten and developed by them in several subsequent papers.

In mathematics, specifically representation theory, tilting theory describes a way to relate the module categories of two algebras using so-called tilting modules and associated tilting functors. Here, the second algebra is the endomorphism algebra of a tilting module over the first algebra.

In the subfield of abstract algebra known as module theory, a right R module M is called a balanced module (or is said to have the double centralizer property) if every endomorphism of the abelian group M which commutes with all R-endomorphisms of M is given by multiplication by a ring element. Explicitly, for any additive endomorphism f, if fg = gf for every R endomorphism g, then there exists an r in R such that f(x) = xr for all x in M. In the case of non-balanced modules, there will be such an f that is not expressible this way.

Claudio Procesi is an Italian mathematician, known for works in algebra and representation theory.

In the mathematical areas of linear algebra and representation theory, a problem is wild if it contains the problem of classifying pairs of square matrices up to simultaneous similarity. Examples of wild problems are classifying indecomposable representations of any quiver that is neither a Dynkin quiver nor a Euclidean quiver.

This is a glossary of representation theory in mathematics.

<span class="mw-page-title-main">Glossary of Lie groups and Lie algebras</span>

This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.

Andrei Vladimirovich Roiter was a Ukrainian mathematician, specializing in algebra.

References

    1. Gherardelli, Francesco; Centro Internazionale Matematico Estivo, eds. (1983). Invariant theory: proceedings of the 1st 1982 Session of the Centro Internazionale Matematico Estivo (C.I.M.E.), held at Montecatini, Italy, June 10-18, 1982. Lecture notes in mathematics. Berlin Heidelberg: Springer. ISBN   978-3-540-12319-4.