Galbraith plot

Last updated

In statistics, a Galbraith plot (also known as Galbraith's radial plot or just radial plot) is one way of displaying several estimates of the same quantity that have different standard errors. [1]

Contents

Example for Galbraith's radial plot. Example Galbraith's radial plot.svg
Example for Galbraith's radial plot.

It can be used to examine heterogeneity in a meta-analysis, as an alternative or supplement to a forest plot.

A Galbraith plot is produced by first calculating the standardized estimates or z-statistics by dividing each estimate by its standard error (SE). The Galbraith plot is then a scatter plot of each z-statistic (vertical axis) against 1/SE (horizontal axis). Larger studies (with smaller SE and larger 1/SE) will be observed to aggregate away from the origin. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Neutron</span> Subatomic particle with no charge

The neutron is a subatomic particle, symbol
n
or
n0
, which has no electric charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave similarly within the nucleus, they are both referred to as nucleons. Nucleons have a mass of approximately one atomic mass unit, or dalton. Their properties and interactions are described by nuclear physics. Protons and neutrons are not elementary particles; each is composed of three quarks.

Rutherfordium is a synthetic chemical element; it has symbol Rf and atomic number 104. It is named after physicist Ernest Rutherford. As a synthetic element, it is not found in nature and can only be made in a particle accelerator. It is radioactive; the most stable known isotope, 267Rf, has a half-life of about 48 minutes.

Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks or carbon, in which trace radioactive impurities were selectively incorporated when they were formed. The method compares the abundance of a naturally occurring radioactive isotope within the material to the abundance of its decay products, which form at a known constant rate of decay. The use of radiometric dating was first published in 1907 by Bertram Boltwood and is now the principal source of information about the absolute age of rocks and other geological features, including the age of fossilized life forms or the age of Earth itself, and can also be used to date a wide range of natural and man-made materials.

Medical physics deals with the application of the concepts and methods of physics to the prevention, diagnosis and treatment of human diseases with a specific goal of improving human health and well-being. Since 2008, medical physics has been included as a health profession according to International Standard Classification of Occupation of the International Labour Organization.

<span class="mw-page-title-main">Dosimetry</span> Measurement of absorbed ionizing radiation

Radiation dosimetry in the fields of health physics and radiation protection is the measurement, calculation and assessment of the ionizing radiation dose absorbed by an object, usually the human body. This applies both internally, due to ingested or inhaled radioactive substances, or externally due to irradiation by sources of radiation.

<span class="mw-page-title-main">Spontaneous fission</span> Form of radioactive decay

Spontaneous fission (SF) is a form of radioactive decay in which a heavy atomic nucleus splits into two or more lighter nuclei. In contrast to induced fission, there is no inciting particle to trigger the decay; it is a purely probabilistic process.

In physics, optically stimulated luminescence (OSL) is a method for measuring doses from ionizing radiation. It is used in at least two applications:

Monte Carlo N-Particle Transport (MCNP) is a general-purpose, continuous-energy, generalized-geometry, time-dependent, Monte Carlo radiation transport code designed to track many particle types over broad ranges of energies and is developed by Los Alamos National Laboratory. Specific areas of application include, but are not limited to, radiation protection and dosimetry, radiation shielding, radiography, medical physics, nuclear criticality safety, detector design and analysis, nuclear oil well logging, accelerator target design, fission and fusion reactor design, decontamination and decommissioning. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and fourth-degree elliptical tori.

Rutherfordium (104Rf) is a synthetic element and thus has no stable isotopes. A standard atomic weight cannot be given. The first isotope to be synthesized was either 259Rf in 1966 or 257Rf in 1969. There are 16 known radioisotopes from 253Rf to 270Rf and several isomers. The longest-lived isotope is 267Rf with a half-life of 48 minutes, and the longest-lived isomer is 263mRf with a half-life of 8 seconds.

The limit of detection is the lowest signal, or the lowest corresponding quantity to be determined from the signal, that can be observed with a sufficient degree of confidence or statistical significance. However, the exact threshold used to decide when a signal significantly emerges above the continuously fluctuating background noise remains arbitrary and is a matter of policy and often of debate among scientists, statisticians and regulators depending on the stakes in different fields.

Nuclear data represents measured probabilities of various physical interactions involving the nuclei of atoms. It is used to understand the nature of such interactions by providing the fundamental input to many models and simulations, such as fission and fusion reactor calculations, shielding and radiation protection calculations, criticality safety, nuclear weapons, nuclear physics research, medical radiotherapy, radioisotope therapy and diagnostics, particle accelerator design and operations, geological and environmental work, radioactive waste disposal calculations, and space travel calculations.

<span class="mw-page-title-main">Q–Q plot</span> Plot of the empirical distribution of p-values against the theoretical one

In statistics, a Q–Q plot (quantile–quantile plot) is a probability plot, a graphical method for comparing two probability distributions by plotting their quantiles against each other. A point (x, y) on the plot corresponds to one of the quantiles of the second distribution (y-coordinate) plotted against the same quantile of the first distribution (x-coordinate). This defines a parametric curve where the parameter is the index of the quantile interval.

<span class="mw-page-title-main">Luminescence dating</span> Form of dating how long ago mineral grains had been last exposed to sunlight or heating

Luminescence dating refers to a group of chronological dating methods of determining how long ago mineral grains were last exposed to sunlight or sufficient heating. It is useful to geologists and archaeologists who want to know when such an event occurred. It uses various methods to stimulate and measure luminescence.

<span class="mw-page-title-main">Computational statistics</span> Interface between statistics and computer science

Computational statistics, or statistical computing, is the study which is the intersection of statistics and computer science, and refers to the statistical methods that are enabled by using computational methods. It is the area of computational science specific to the mathematical science of statistics. This area is fast developing. The view that the broader concept of computing must be taught as part of general statistical education is gaining momentum.

<span class="mw-page-title-main">Plot (graphics)</span> Graphical technique for data sets

A plot is a graphical technique for representing a data set, usually as a graph showing the relationship between two or more variables. The plot can be drawn by hand or by a computer. In the past, sometimes mechanical or electronic plotters were used. Graphs are a visual representation of the relationship between variables, which are very useful for humans who can then quickly derive an understanding which may not have come from lists of values. Given a scale or ruler, graphs can also be used to read off the value of an unknown variable plotted as a function of a known one, but this can also be done with data presented in tabular form. Graphs of functions are used in mathematics, sciences, engineering, technology, finance, and other areas.

Psychometric software refers to specialized programs used for the psychometric analysis of data obtained from tests, questionnaires, polls or inventories that measure latent psychoeducational variables. Although some psychometric analyses can be performed using general statistical software such as SPSS, most require specialized tools designed specifically for psychometric purposes.

<span class="mw-page-title-main">Alpha particle</span> Ionizing radiation particle of two protons and two neutrons

Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produced in other ways. Alpha particles are named after the first letter in the Greek alphabet, α. The symbol for the alpha particle is α or α2+. Because they are identical to helium nuclei, they are also sometimes written as He2+ or 4
2
He
2+ indicating a helium ion with a +2 charge (missing its two electrons). Once the ion gains electrons from its environment, the alpha particle becomes a normal (electrically neutral) helium atom 4
2
He
.

Ancient TL is a peer-reviewed open-access scientific journal covering luminescence and electron spin resonance dating. It is published by the Institute of Earth Surface Dynamics, University of Lausanne.

<span class="mw-page-title-main">Optically stimulated luminescence thermochronometry</span>

Optically stimulated luminescence (OSL) thermochronometry is a dating method used to determine the time since quartz and/or feldspar began to store charge as it cools through the effective closure temperature. The closure temperature for quartz and Na-rich K-feldspar is 30-35 °C and 25 °C respectively. When quartz and feldspar are beneath the earth, they are hot. They cool when any geological process e.g. focused erosion causes their exhumation to the earth surface. As they cool, they trap electron charges originating from within the crystal lattice. These charges are accommodated within crystallographic defects or vacancies in their crystal lattices as the mineral cools below the closure temperature.

For the American musician, see Wayne Nelson.

References

  1. Galbraith, Rex (1988). "Graphical display of estimates having differing standard errors". Technometrics. 30 (3). Technometrics, Vol. 30, No. 3: 271–281. doi:10.2307/1270081. JSTOR   1270081.
  2. University of York, Department of Health sciences MSc course material

Further reading