Gamma ray cross section

Last updated

Gamma ray cross section - a measure of the probability that gamma ray interacts with matter. The total cross section of gamma ray interactions is composed of several independent processes: photoelectric effect, Compton scattering, electron-positron pair production in the nucleus field and electron-positron pair production in the electron field (triplet production). The cross section for single process listed above is a part of the total gamma ray cross section.

Contents

Other effects, like the photonuclear absorption, Thomson or Rayleigh (coherent) scattering can be omitted because of their nonsignificant contribution in the gamma ray range of energies.

The detailed equations for cross sections (barn/atom) of all mentioned effects connected with gamma ray interaction with matter are listed below.

Photoelectric effect cross section

This phenomenon describes the situation in which a gamma photon interacts with an electron located in the atomic structure. This results the ejection of that electron from the atom. The photoelectric effect is the dominant energy transfer mechanism for X-ray and gamma ray photons with energies below 50 keV. It is much less important at higher energies, but still needs to be taken into consideration.

Usually, the cross section of the photoeffect can be approximated by the simplified equation of [1] [2]

where k = Eγ / Ee, and where Eγ = hν is the photon energy given in eV and Ee = me c2 ≈ 5,11∙105 eV is the electron rest mass energy, Z is an atomic number of the absorber's element, α = e2/(ħc) ≈ 1/137 is the fine structure constant, and re2 = e4/Ee2 ≈ 0.07941 b is the square of the classical electron radius in barns.

For higher precision, however, the Sauter equation [3] is more appropriate:

where

and EB is a binding energy of electron, and ϕ0 is a Thomson cross section0 = 8πe4/(3Ee2) ≈ 0.66526 barn).

For higher energies (>0.5 MeV) the cross section of the photoelectric effect is very small because other effects (especially Compton scattering) dominates. However, for precise calculations of the photoeffect cross section in high energy range, the Sauter equation shall be substituted by the Pratt-Scofield equation [4] [5] [6]

where all input parameters are presented in the Table below.

nanbncnpn
11.6268∙10−9-2.683∙10−124.173∙10−21
21.5274∙10−9-5.110∙10−131.027∙10−22
31.1330∙10−9-2.177∙10−122.013∙10−23.5
4-9.12∙10−11004

Compton scattering cross section

Compton scattering (or Compton effect) is an interaction in which an incident gamma photon interact with an atomic electron to cause its ejection and scatter of the original photon with lower energy. The probability of Compton scattering decreases with increasing photon energy. Compton scattering is thought to be the principal absorption mechanism for gamma rays in the intermediate energy range 100 keV to 10 MeV.

The cross section of the Compton effect is described by the Klein-Nishina equation:

for energies higher than 100 keV (k>0.2). For lower energies, however, this equation shall be substituted by: [6]

which is proportional to the absorber's atomic number, Z.

The additional cross section connected with the Compton effect can be calculated for the energy transfer coefficient only – the absorption of the photon energy by the electron: [7]

which is often used in radiation protection calculations.

Pair production (in nucleus field) cross section

By interaction with the electric field of a nucleus, the energy of the incident photon is converted into the mass of an electron-positron (ee+) pair. The cross section for the pair production effect is usually described by the Maximon equation: [8] [6]

for low energies (k<4),

where

.

However, for higher energies (k>4) the Maximon equation has a form of

where ζ(3)≈1.2020569 is the Riemann zeta function. The energy threshold for the pair production effect is k=2 (the positron and electron rest mass energy).

Triplet production cross section

The triplet production effect, where positron and electron is produced in the field of other electron, is similar to the pair production, with the threshold at k=4. This effect, however, is much less probable than the pair production in the nucleus field. The most popular form of the triplet cross section was formulated as Borsellino-Ghizzetti equation [6]

where a=-2.4674 and b=-1.8031. This equation is quite long, so Haug [9] proposed simpler analytical forms of triplet cross section. Especially for the lowest energies 4<k<4.6:

For 4.6<k<6:

For 6<k<18:

For k>14 Haug proposed to use a shorter form of Borsellino equation: [9] [10]

Total cross section

One can present the total cross section per atom as a simple sum of each effects: [2]

Next, using the Beer–Lambert–Bouguer law, one can calculate the linear attenuation coefficient for the photon interaction with an absorber of atomic density N:

or the mass attenuation coefficient:

where ρ is mass density, u is an atomic mass unit, a A is the atomic mass of the absorber.

This can be directly used in practice, e.g. in the radiation protection.

The analytical calculation of the cross section of each specific phenomenon is rather difficult because appropriate equations are long and complicated. Thus, the total cross section of gamma interaction can be presented in one phenomenological equation formulated by Fornalski, [11] which can be used instead:

where ai,j parameters are presented in Table below. This formula is an approximation of the total cross section of gamma rays interaction with matter, for different energies (from 1 MeV to 10 GeV, namely 2<k<20,000) and absorber's atomic numbers (from Z=1 to 100).

ai,ji=0i=1i=2i=3i=4i=5i=6
j=00.0830899-0.087177430.02610534-2.74655∙10−34.39504∙10−59.05605∙10−6-3.97621∙10−7
j=10.265283-0.101670090.007017932.371288∙10−3-5.020251∙10−43.6531∙10−5-9.46044∙10−7
j=22.18838∙10−3-2.914205∙10−31.26639∙10−3-7.6598∙10−5-1.58882∙10−52.18716∙10−6-7.49728∙10−8
j=3-4.48746∙10−54.75329∙10−5-1.43471∙10−51.19661∙10−65.7891∙10−8-1.2617∙10−84.633∙10−10
j=46.29882∙10−7-6.72311∙10−72.61963∙10−7-5.1862∙10−85.692∙10−9-3.29∙10−107.7∙10−12

For lower energy region (<1 MeV) the Fornalski equation is more complicated due to the larger function variability of different elements. Therefore, the modified equation [11]

is a good approximation for photon energies from 150 keV to 10 MeV, where the photon energy E is given in MeV, and ai,j parameters are presented in Table below with much better precision. Analogically, the equation is valid for all Z from 1 to 100.

ai,jj=0j=1j=2j=3j=4j=5j=6
i=0-1.5391379595632770.3722271606115605-0.0189188949792300435.304673816064956∙10−4-7.901251450214221∙10−65.9124040925689876∙10−8-1.7450439521037788∙10−10
i=1-0.490137712959010157.366301806437177∙10−4-8.898417420107425∙10−53.294237085781055∙10−6-8.450746169984143∙10−87.640266479340313∙10−10-2.282367050913894∙10−12
i=2-0.057054606222562270.001957234615764126-6.187107799669643∙10−52.1901234933548505∙10−61.9412437622425253∙10−8-5.851534943255455∙10−102.7073481839614158∙10−12
i=30.001395861376531693-7.137867469026608∙10−42.462958782088413∙10−4-9.660290609660555∙10−61.295493742164346∙10−7-6.538025860945927∙10−108.763097742806648∙10−13
i=45.105805426257604∙10−50.0011420827759804927-8.177273886356552∙10−54.564725445290536∙10−6-9.707786695822055∙10−88.351662725636947∙10−10-2.545941852995417∙10−12
i=5-5.416099245465933∙10−45.65398317844477∙10−4-5.294089702089374∙10−55.437298837558547∙10−71.4824427385312707∙10−8-2.8079293400520423∙10−101.247192025425616∙10−12
i=63.6322794450615036∙10−4-2.186723664102979∙10−41.739236692381265∙10−5-3.7341071277534563∙10−71.1585158108088033∙10−93.1805366711255584∙10−11-2.0806866173605604∙10−13

XCOM Database of cross sections

The US National Institute of Standards and Technology published on-line [12] a complete and detailed database of cross section values of X-ray and gamma ray interactions with different materials in different energies. The database, called XCOM, contains also linear and mass attenuation coefficients, which are useful for practical applications.

See also

Related Research Articles

<span class="mw-page-title-main">Maxwell–Boltzmann distribution</span> Specific probability distribution function, important in physics

In physics, the Maxwell–Boltzmann distribution, or Maxwell(ian) distribution, is a particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann.

<span class="mw-page-title-main">Stimulated emission</span> Release of a photon triggered by another

Stimulated emission is the process by which an incoming photon of a specific frequency can interact with an excited atomic electron, causing it to drop to a lower energy level. The liberated energy transfers to the electromagnetic field, creating a new photon with a frequency, polarization, and direction of travel that are all identical to the photons of the incident wave. This is in contrast to spontaneous emission, which occurs at a characteristic rate for each of the atoms/oscillators in the upper energy state regardless of the external electromagnetic field.

<span class="mw-page-title-main">Bremsstrahlung</span> Electromagnetic radiation due to deceleration of charged particles

In particle physics, bremsstrahlung is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus. The moving particle loses kinetic energy, which is converted into radiation, thus satisfying the law of conservation of energy. The term is also used to refer to the process of producing the radiation. Bremsstrahlung has a continuous spectrum, which becomes more intense and whose peak intensity shifts toward higher frequencies as the change of the energy of the decelerated particles increases.

<span class="mw-page-title-main">Compton scattering</span> Scattering of photons off charged particles

Compton scattering is the quantum theory of high frequency photons scattering following an interaction with a charged particle, usually an electron. Specifically, when the photon hits electrons, it releases loosely bound electrons from the outer valence shells of atoms or molecules.

<span class="mw-page-title-main">Pair production</span> Interaction of a photon with matter resulting into creation of electron-positron pair

Pair production is the creation of a subatomic particle and its antiparticle from a neutral boson. Examples include creating an electron and a positron, a muon and an antimuon, or a proton and an antiproton. Pair production often refers specifically to a photon creating an electron–positron pair near a nucleus. As energy must be conserved, for pair production to occur, the incoming energy of the photon must be above a threshold of at least the total rest mass energy of the two particles created. Conservation of energy and momentum are the principal constraints on the process. All other conserved quantum numbers of the produced particles must sum to zero – thus the created particles shall have opposite values of each other. For instance, if one particle has electric charge of +1 the other must have electric charge of −1, or if one particle has strangeness of +1 then another one must have strangeness of −1.

In physics, mean free path is the average distance over which a moving particle travels before substantially changing its direction or energy, typically as a result of one or more successive collisions with other particles.

<span class="mw-page-title-main">Theta function</span> Special functions of several complex variables

In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.

In particle, atomic and condensed matter physics, a Yukawa potential is a potential named after the Japanese physicist Hideki Yukawa. The potential is of the form:

In condensed matter physics, scintillation is the physical process where a material, called a scintillator, emits ultraviolet or visible light under excitation from high energy photons or energetic particles. See scintillator and scintillation counter for practical applications.

<span class="mw-page-title-main">Klein–Nishina formula</span> Electron-photon scattering cross section

In particle physics, the Klein–Nishina formula gives the differential cross section of photons scattered from a single free electron, calculated in the lowest order of quantum electrodynamics. It was first derived in 1928 by Oskar Klein and Yoshio Nishina, constituting one of the first successful applications of the Dirac equation. The formula describes both the Thomson scattering of low energy photons and the Compton scattering of high energy photons, showing that the total cross section and expected deflection angle decrease with increasing photon energy.

The Compton wavelength is a quantum mechanical property of a particle, defined as the wavelength of a photon the energy of which is the same as the rest energy of that particle. It was introduced by Arthur Compton in 1923 in his explanation of the scattering of photons by electrons.

<span class="mw-page-title-main">Stieltjes constants</span>

In mathematics, the Stieltjes constants are the numbers that occur in the Laurent series expansion of the Riemann zeta function:

<span class="mw-page-title-main">Lemniscate constant</span> Ratio of the perimeter of Bernoullis lemniscate to its diameter

In mathematics, the lemniscate constantϖ is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of π for the circle. Equivalently, the perimeter of the lemniscate is 2ϖ. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755. The symbol ϖ is a cursive variant of π; see Pi § Variant pi.

In particle physics, a shower is a cascade of secondary particles produced as the result of a high-energy particle interacting with dense matter. The incoming particle interacts, producing multiple new particles with lesser energy; each of these then interacts, in the same way, a process that continues until many thousands, millions, or even billions of low-energy particles are produced. These are then stopped in the matter and absorbed.

<span class="mw-page-title-main">Møller scattering</span> Electron-electron scattering

Møller scattering is the name given to electron-electron scattering in quantum field theory, named after the Danish physicist Christian Møller. The electron interaction that is idealized in Møller scattering forms the theoretical basis of many familiar phenomena such as the repulsion of electrons in the helium atom. While formerly many particle colliders were designed specifically for electron-electron collisions, more recently electron-positron colliders have become more common. Nevertheless, Møller scattering remains a paradigmatic process within the theory of particle interactions.

<span class="mw-page-title-main">Lateral earth pressure</span> Pressure of soil in horizontal direction

The lateral earth pressure is the pressure that soil exerts in the horizontal direction. It is important because it affects the consolidation behavior and strength of the soil and because it is considered in the design of geotechnical engineering structures such as retaining walls, basements, tunnels, deep foundations and braced excavations.

A hydrogen-like atom (or hydrogenic atom) is any atom or ion with a single valence electron. These atoms are isoelectronic with hydrogen. Examples of hydrogen-like atoms include, but are not limited to, hydrogen itself, all alkali metals such as Rb and Cs, singly ionized alkaline earth metals such as Ca+ and Sr+ and other ions such as He+, Li2+, and Be3+ and isotopes of any of the above. A hydrogen-like atom includes a positively charged core consisting of the atomic nucleus and any core electrons as well as a single valence electron. Because helium is common in the universe, the spectroscopy of singly ionized helium is important in EUV astronomy, for example, of DO white dwarf stars.

Surface-extended X-ray absorption fine structure (SEXAFS) is the surface-sensitive equivalent of the EXAFS technique. This technique involves the illumination of the sample by high-intensity X-ray beams from a synchrotron and monitoring their photoabsorption by detecting in the intensity of Auger electrons as a function of the incident photon energy. Surface sensitivity is achieved by the interpretation of data depending on the intensity of the Auger electrons instead of looking at the relative absorption of the X-rays as in the parent method, EXAFS.

In nuclear physics and atomic physics, weak charge refers to the Standard Model weak interaction coupling of a particle to the Z boson. For example, for any given nuclear isotope, the total weak charge is approximately −0.99 per neutron, and +0.07 per proton. It also shows an effect of parity violation during electron scattering.

Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons, electrons, fluid particles, and photons. Heat is thermal energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes are governed by the rates at which various related physical phenomena occur, such as the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level to macroscale are the laws of thermodynamics, including conservation of energy.

References

  1. Davisson, C.M. (1965). Interaction of gamma-radiation with matter. In: Alpha-, Beta- and Gamma-ray Spectroscopy: Volume 1. Edited by Kai Siegbahn. Amsterdam: North-Holland Publishing Company.
  2. 1 2 Fornalski, Krzysztof W (2018-03-22). "Simple empirical correction functions to cross sections of the photoelectric effect, Compton scattering, pair and triplet production for carbon radiation shields for intermediate and high photon energies". Journal of Physics Communications. 2 (3): 035038. doi: 10.1088/2399-6528/aab408 . ISSN   2399-6528.
  3. Davisson, Charlotte Meaker; Evans, Robley D. (1952-04-01). "Gamma-Ray Absorption Coefficients". Reviews of Modern Physics. 24 (2): 79–107. doi:10.1103/RevModPhys.24.79. ISSN   0034-6861.
  4. Pratt, R. H. (1960-02-15). "Atomic Photoelectric Effect at High Energies". Physical Review. 117 (4): 1017–1028. doi:10.1103/PhysRev.117.1017. ISSN   0031-899X.
  5. Scofield J.H. 1973. Theoretical photoionization cross sections from 1 to 1500 keV. Technical Report no. UCRL—51326, California Univ., Livermore. Lawrence Livermore Lab.
  6. 1 2 3 4 Hubbell, J. H.; Gimm, H. A.; O/verbo/, I. (1980). "Pair, Triplet, and Total Atomic Cross Sections (and Mass Attenuation Coefficients) for 1 MeV‐100 GeV Photons in Elements Z =1 to 100". Journal of Physical and Chemical Reference Data. 9 (4): 1023–1148. doi:10.1063/1.555629. ISSN   0047-2689.
  7. Attix F.H. 1986. Introduction to radiological physics and radiation dosimetry. John Wiley & Sons
  8. Maximon L.C. 1968. Simple analytic expressions for the total Born approximation cross section for pair production in a Coulomb field. J. Res. Nat. Bur. Stand., vol. 72B (Math. Sci.), no. 1, pp. 79-88
  9. 1 2 Haug E. 1981. Simple analytic expressions for the total cross section for γ-e pair production. Zeitschrift für Naturforschung, vol. 36a, pp. 413-414
  10. Haug E. 1975. Bremsstrahlung and pair production in the field of free electrons. Zeitschrift für Naturforschung, vol. 30a, pp. 1099-1113
  11. 1 2 Fornalski, Krzysztof Wojciech (2021-01-01). "Total Cross Section Phenomenological Formulas for X-Ray and Gamma Radiation Interaction With Matter for Different Energies and Absorber Types". Journal of Nuclear Engineering and Radiation Science. 7 (1). doi:10.1115/1.4045806. ISSN   2332-8983. S2CID   214397083.
  12. Berger, M.J., Hubbell, J.H., Seltzer, S.M., Chang, J., Coursey, J.S., Sukumar, R., Zucker, D.S., and Olsen, K., 2010. XCOM: Photon Cross Section Database (version 1.5), National Institute of Standards and Technology, Gaithersburg, MD, USA, DOI: 10.18434/T48G6X