Gaseous fission reactor

Last updated

A gas nuclear reactor (or gas fueled reactor or vapor core reactor) is a proposed kind of nuclear reactor in which the nuclear fuel would be in a gaseous state rather than liquid or solid. In this type of reactor, the only temperature-limiting materials would be the reactor walls. Conventional reactors have stricter limitations because the core would melt if the fuel temperature were to rise too high. It may also be possible to confine gaseous fission fuel magnetically, electrostatically or electrodynamically so that it would not touch (and melt) the reactor walls. A potential benefit of the gaseous reactor core concept is that instead of relying on the traditional Rankine or Brayton conversion cycles, it may be possible to extract electricity magnetohydrodynamically, or with simple direct electrostatic conversion of the charged particles.

Nuclear reactor device to initiate and control a sustained nuclear chain reaction

A nuclear reactor, formerly known as an atomic pile, is a device used to initiate and control a self-sustained nuclear chain reaction. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nuclear fission is passed to a working fluid, which in turn runs through steam turbines. These either drive a ship's propellers or turn electrical generators' shafts. Nuclear generated steam in principle can be used for industrial process heat or for district heating. Some reactors are used to produce isotopes for medical and industrial use, or for production of weapons-grade plutonium. Research reactors are run only for research. As of early 2019, the IAEA reports there are 454 nuclear power reactors and 226 nuclear research reactors in operation around the world.

Nuclear fuel material that can be used in nuclear fission or fusion to derive nuclear energy

Nuclear fuel is material used in nuclear power stations to produce heat to power turbines. Heat is created when nuclear fuel undergoes nuclear fission.

Nuclear reactor core portion of a nuclear reactor containing the nuclear fuel

A nuclear reactor core is the portion of a nuclear reactor containing the nuclear fuel components where the nuclear reactions take place and the heat is generated. Typically, the fuel will be low-enriched uranium contained in thousands of individual fuel pins. The core also contains structural components, the means to both moderate the neutrons and control the reaction, and the means to transfer the heat from the fuel to where it is required, outside the core.

Contents

Theory of operation

The vapor core reactor (VCR), also called a gas core reactor (GCR), has been studied for some time. It would have a gas or vapor core composed of uranium tetrafluoride (UF4) with some helium (4He) added to increase the electrical conductivity, the vapor core may also have tiny UF4 droplets in it. It has both terrestrial and space based applications. Since the space concept doesn't necessarily have to be economical in the traditional sense, it allows the enrichment to exceed what would be acceptable for a terrestrial system. It also allows for a higher ratio of UF4 to helium, which in the terrestrial version would be kept just high enough to ensure criticality in order to increase the efficiency of direct conversion. The terrestrial version is designed for a vapor core inlet temperature of about 1,500 K and exit temperature of 2,500 K and a UF4 to helium ratio of around 20% to 60%. It is thought that the outlet temperature could be raised to that of the 8,000 K to 15,000 K range where the exhaust would be a fission-generated non-equilibrium electron gas, which would be of much more importance for a rocket design. A terrestrial version of the VCR's flow schematic can be found in reference 2 and in the summary of non-classical nuclear systems in the second external link. The space based concept would be cut off at the end of the MHD channel.

Uranium tetrafluoride chemical compound

Uranium tetrafluoride (UF4) is a green crystalline solid compound of uranium with an insignificant vapor pressure and very slight solubility in water. Uranium in its tetravalent (uranous) state is very important in different technological processes. In the uranium refining industry it is known as green salt.

Helium Chemical element with atomic number 2

Helium is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas, the first in the noble gas group in the periodic table. Its boiling point is the lowest among all the elements. After hydrogen, helium is the second lightest and second most abundant element in the observable universe, being present at about 24% of the total elemental mass, which is more than 12 times the mass of all the heavier elements combined. Its abundance is similar to this figure in the Sun and in Jupiter. This is due to the very high nuclear binding energy of helium-4 with respect to the next three elements after helium. This helium-4 binding energy also accounts for why it is a product of both nuclear fusion and radioactive decay. Most helium in the universe is helium-4, the vast majority of which was formed during the Big Bang. Large amounts of new helium are being created by nuclear fusion of hydrogen in stars.

Reasoning for He-4 addition

4He may be used in increase the ability of the design to extract energy and be controlled. A few sentences from Anghaie et al. sheds light on the reasoning:

"The power density in the MHD duct is proportional to the product of electrical conductivity, velocity squared and magnetic field squared σv²B². Therefore, the enthalpy extraction is very sensitive to the MHD input-output fluid conditions. The vapor core reactor provides a hotter-than-most fluid with potential for adequate thermal equilibrium conductivity and duct velocities. Considering the product v² × B², it is apparent that a light working fluid should dominate the thermal properties and the UF4 fraction should be small. Additional electrical conductivity enhancement might be needed from thermal ionization of suitable seed materials, and from non-equilibrium ionization by fission fragments and other ionizing radiation produced by the fissioning process." [1]

Spacecraft

The spacecraft variant of the gaseous fission reactor is called the gas core reactor rocket. There are two approaches: the open and closed cycle. In the open cycle, the propellant, most likely hydrogen, is fed to the reactor, heated up by the nuclear reaction in the reactor, and exits out the other end. Unfortunately, the propellant will be contaminated by fuel and fission products, and although the problem can be mitigated by engineering the hydrodynamics within the reactor, it renders the rocket design completely unsuitable for use in atmosphere.

Gas core reactor rockets are a conceptual type of rocket that is propelled by the exhausted coolant of a gaseous fission reactor. The nuclear fission reactor core may be either a gas or plasma. They may be capable of creating specific impulses of 3,000–5,000 s and thrust which is enough for relatively fast interplanetary travel. Heat transfer to the working fluid (propellant) is by thermal radiation, mostly in the ultraviolet, given off by the fission gas at a working temperature of around 25,000 °C.

One might attempt to circumvent the problem by confining the fission fuel magnetically, in a manner similar to the fusion fuel in a tokamak. Unfortunately it is not likely that this arrangement will actually work to contain the fuel, since the ratio of ionization to particle momentum is not favourable. Whereas a tokamak would generally work to contain singly ionized deuterium or tritium with a mass of two or three daltons, the uranium vapour would be at most triply ionized with a mass of 235 dalton (unit). Since the force imparted by a magnetic field is proportional to the charge on the particle, and the acceleration is proportional to the force divided by the mass of the particle, the magnets required to contain uranium gas would be impractically large; most such designs have focused on fuel cycles that do not depend upon retaining the fuel in the reactor.

Tokamak device using a magnetic field to confine a plasma in the shape of a torus

A tokamak is a device which uses a powerful magnetic field to confine a hot plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. As of 2016, it is the leading candidate for a practical fusion reactor.

The unified atomic mass unit or dalton is a standard unit of mass that quantifies mass on an atomic or molecular scale. One unified atomic mass unit is approximately the mass of one nucleon and is effectively numerically equivalent to 1 g/mol. It is defined as one twelfth of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at rest, and has a value approaching 1.66053906660(50)×10−27 kg, or approximately 1.66 yoctograms. The CIPM has categorised it as a non-SI unit accepted for use with the SI, and whose value in SI units must be obtained experimentally.

In the closed cycle, the reaction is entirely shielded from the propellant. The reaction is contained in a quartz vessel and the propellant merely flows outside of it, being heated in an indirect fashion. The closed cycle avoids contamination because the propellant can't enter the reactor itself, but the solution carries a significant penalty to the rocket's Isp.

Specific impulse is a measure of how effectively a rocket uses propellant or a jet engine uses fuel. By definition, it is the total impulse delivered per unit of propellant consumed and is dimensionally equivalent to the generated thrust divided by the propellant mass flow rate or weight flow rate. If mass is used as the unit of propellant, then specific impulse has units of velocity. If weight is used instead, then specific impulse has units of time (seconds). Multiplying flow rate by the standard gravity (g0) converts specific impulse from the mass basis to the weight basis.

Energy production

For energy production purposes, one might use a container located inside a solenoid. The container is filled with gaseous uranium hexafluoride, where the uranium is enriched, to a level just short of criticality. Afterward, the uranium hexafluoride is compressed by external means, thus initiating a nuclear chain reaction and a great amount of heat, which in turn causes an expansion of the uranium hexafluoride. Since the UF6 is contained within the vessel, it can't escape and thus compresses elsewhere. The result is a plasma wave moving in the container, and the solenoid converts some of its energy into electricity at an efficiency level of about 20%. In addition, the container must be cooled, and one can extract energy from the coolant by passing it through a heat exchanger and turbine system as in an ordinary thermal power plant.

Uranium hexafluoride chemical compound

Uranium hexafluoride (UF6), colloquially known as "hex" in the nuclear industry, is a compound used in the process of enriching uranium, which produces fuel for nuclear reactors and nuclear weapons. Hex forms solid grey crystals at standard temperature and pressure, is highly toxic, reacts with water, and is corrosive to most metals. The compound reacts mildly with aluminium, forming a thin surface layer of AlF3 that resists any further reaction from the compound.

However, there are enormous problems with corrosion during this arrangement, as the uranium hexafluoride is chemically very reactive.

See also

Related Research Articles

Isotope separation is the process of concentrating specific isotopes of a chemical element by removing other isotopes. The use of the nuclides produced is various. The largest variety is used in research. By tonnage, separating natural uranium into enriched uranium and depleted uranium is the largest application. In the following text, mainly the uranium enrichment is considered. This process is a crucial one in the manufacture of uranium fuel for nuclear power stations, and is also required for the creation of uranium based nuclear weapons. Plutonium-based weapons use plutonium produced in a nuclear reactor, which must be operated in such a way as to produce plutonium already of suitable isotopic mix or grade. While different chemical elements can be purified through chemical processes, isotopes of the same element have nearly identical chemical properties, which makes this type of separation impractical, except for separation of deuterium.

Nuclear thermal rocket form of rocket propulsion

A nuclear thermal rocket is a proposed spacecraft propulsion technology. In a nuclear thermal rocket a working fluid, usually liquid hydrogen, is heated to a high temperature in a nuclear reactor, and then expands through a rocket nozzle to create thrust. In this kind of thermal rocket the nuclear reactor's energy replaces the chemical energy of the propellant's reactive chemicals in a chemical rocket. The thermal heater / inert propellant paradigm as opposed to the reactive propellants of chemical rockets turns out to produce a superior effective exhaust velocity, and therefore a superior propulsive efficiency, with specific impulses on the order of twice that of chemical engines. The overall gross lift-off mass of a nuclear rocket is about half that of a chemical rocket, and hence when used as an upper stage it roughly doubles or triples the payload carried to orbit.

In a Nuclear Electric Rocket, nuclear thermal energy is changed into electrical energy that is used to power one of the electrical propulsion technologies. Technically the powerplant is nuclear, not the propulsion system, but the terminology is standard. A number of heat-to-electricity schemes have been proposed: Rankine cycle, Brayton cycle, Stirling cycle, thermoelectric, pyroelectric, thermophotovoltaic, thermionic and magnetohydrodynamic type thermoelectric materials.

A nuclear salt-water rocket (NSWR) is a theoretical type of nuclear thermal rocket which was designed by Robert Zubrin. In place of traditional chemical propellant, such as that in a chemical rocket, the rocket would be fueled by salts of plutonium or 20 percent enriched uranium. The solution would be contained in a bundle of pipes coated in boron carbide. Through a combination of the coating and space between the pipes, the contents would not reach critical mass until the solution is pumped into a reaction chamber, thus reaching a critical mass, and being expelled through a nozzle to generate thrust.

Nuclear fuel cycle Process of manufacturing and consuming nuclear fuel

The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end, which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end, which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel. If spent fuel is not reprocessed, the fuel cycle is referred to as an open fuel cycle ; if the spent fuel is reprocessed, it is referred to as a closed fuel cycle.

The fission-fragment rocket is a rocket engine design that directly harnesses hot nuclear fission products for thrust, as opposed to using a separate fluid as working mass. The design can, in theory, produce very high specific impulse while still being well within the abilities of current technologies.

Gaseous diffusion

Gaseous diffusion is a technology used to produce enriched uranium by forcing gaseous uranium hexafluoride (UF6) through semipermeable membranes. This produces a slight separation between the molecules containing uranium-235 (235U) and uranium-238 (238U). By use of a large cascade of many stages, high separations can be achieved. It was the first process to be developed that was capable of producing enriched uranium in industrially useful quantities.

Molten salt reactor class of nuclear fission reactors with molten salt as the primary coolant or the fuel

A molten salt reactor (MSR) is a class of nuclear fission reactor in which the primary nuclear reactor coolant and/or the fuel is a molten salt mixture. MSRs offer multiple advantages over conventional nuclear power plants, although for historical reasons, they have not been deployed.

Nuclear lightbulb

A nuclear lightbulb is a hypothetical type of spacecraft engine using a gaseous fission reactor to achieve nuclear propulsion. Specifically it would be a type of gas core reactor rocket that separates nuclear fuel from coolant/propellant with a quartz wall. It would be operated at such high temperature that the vast majority of the electromagnetic emissions would be in the hard ultraviolet range. Fused silica is almost completely transparent to this light, so it would be used to contain the uranium hexafluoride and allow the light to heat reaction mass in a rocket or to generate electricity using a heat engine or photovoltaics. This type of reactor shows great promise in both of these roles.

Fluoride volatility is the tendency of highly fluorinated molecules to vaporize at comparatively low temperatures. Heptafluorides, hexafluorides and pentafluorides have much lower boiling points than the lower-valence fluorides. Most difluorides and trifluorides have high boiling points, while most tetrafluorides and monofluorides fall in between. The term "fluoride volatility" is jargon used particularly in the context of separation of radionuclides.

Very-high-temperature reactor A type of nuclear reactor

The very-high-temperature reactor (VHTR), or high-temperature gas-cooled reactor (HTGR), is a Generation IV reactor concept that uses a graphite-moderated nuclear reactor with a once-through uranium fuel cycle. The VHTR is a type of high-temperature reactor (HTR) that can conceptually have an outlet temperature of 1000 °C. The reactor core can be either a "prismatic block" or a "pebble-bed" core. The high temperatures enable applications such as process heat or hydrogen production via the thermochemical sulfur–iodine cycle.

Gas-cooled fast reactor

The gas-cooled fast reactor (GFR) system is a nuclear reactor design which is currently in development. Classed as a Generation IV reactor, it features a fast-neutron spectrum and closed fuel cycle for efficient conversion of fertile uranium and management of actinides. The reference reactor design is a helium-cooled system operating with an outlet temperature of 850 °C using a direct Brayton closed-cycle gas turbine for high thermal efficiency. Several fuel forms are being considered for their potential to operate at very high temperatures and to ensure an excellent retention of fission products: composite ceramic fuel, advanced fuel particles, or ceramic clad elements of actinide compounds. Core configurations are being considered based on pin- or plate-based fuel assemblies or prismatic blocks, which allows for better coolant circulation than traditional fuel assemblies.

Molecular laser isotope separation (MLIS) is a method of isotope separation, where specially tuned lasers are used to separate isotopes of uranium using selective ionization of hyperfine transitions of uranium hexafluoride molecules. It is similar to AVLIS. Its main advantage over AVLIS is low energy consumption and use of uranium hexafluoride instead of vaporized uranium.

Molten-Salt Reactor Experiment

The Molten-Salt Reactor Experiment (MSRE) was an experimental molten salt reactor at the Oak Ridge National Laboratory (ORNL) researching this technology through the 1960s; constructed by 1964, it went critical in 1965 and was operated until 1969.

Similar to how the fission-fragment rocket produces thrust, a fission fragment reactor is a nuclear reactor that generates electricity by decelerating an ion beam of fission byproducts instead of using nuclear reactions to generate heat. By doing so, it bypasses the Carnot cycle and can achieve efficiencies of up to 90% instead of 40-45% attainable by efficient turbine-driven thermal reactors. The fission fragment ion beam would be passed through a magnetohydrodynamic generator to produce electricity.

Liquid fluoride thorium reactor

The liquid fluoride thorium reactor is a type of molten salt reactor. LFTRs use the thorium fuel cycle with a fluoride-based, molten, liquid salt for fuel. In a typical design, the liquid is pumped between a critical core and an external heat exchanger where the heat is transferred to a nonradioactive secondary salt. The secondary salt then transfers its heat to a steam turbine or closed-cycle gas turbine.

Pulsed nuclear thermal rocket

A pulsed nuclear thermal rocket is a type of nuclear thermal rocket (NTR) concept developed at the Polytechnic University of Catalonia, Spain and presented at the 2016 AIAA/SAE/ASEE Propulsion Conference for thrust and specific impulse (Isp) amplification in a conventional nuclear thermal rocket.

References

  1. Anghaie, S., Pickard, P., Lewis, D. (unknown date). Gas Core & Vapor Core Reactors—Concept Summary