Geislinger coupling

Last updated
The Geislinger coupling is a torsional elastic, high-damping steel spring coupling with hydrodynamic damping. High reliability, long intervals between overhauls, and low life-cycle cost are its main advantages. Geislinger-Coupling.jpg
The Geislinger coupling is a torsional elastic, high-damping steel spring coupling with hydrodynamic damping. High reliability, long intervals between overhauls, and low life-cycle cost are its main advantages.

The Geislinger coupling is an all-metal coupling for rotating shafts. It is elastic in torsion, allowing it to absorb torsional vibration. [1]

Contents

Unlike some other coupling types, it is not intended to compensate for high radial mis-alignment between shafts, but it can compensate axial misalignments better than elastomer couplings. The coupling may have a small ability to compensate for varying alignment, but if this is needed it is generally done through using an additional coupling in tandem. The coupling also runs at the same speed for input and output shafts, unlike a torque converter.

Development

The design was invented by Dr. Ing. Leonhard Geislinger in 1958. [2] Its first use was for large diesel engines in locomotives, but it is also widely used in ships. [2]

Geislinger couplings are constructed inside robust enclosed steel housings. An outer housing and a central hub, or "inner star" [3] form the input and output drive members. Internally, the drive is transmitted through a number of radial leaf springs. [1] The steel leaf springs are available in several configurations, and the stiffness increases linearly with displacement. These leaf springs are damped by a damping ring, the tips of the longest leaves engaging in splines in the inner star.

Hydraulic damping is provided, as the leaf springs are immersed in oil. Any movement of the spring plates must squeeze oil through the narrow gaps around them between the plates and the casing. As the springs have a high surface area, yet there is only a small gap between them and their housing, the damping factor can be high. Damping can be adjusted completely independently from the coupling's torsional stiffness. The oil used for damping is usually supplied by the engine lubrication system, through a drilling in the crankshaft. [1] If this is unavailable, an oil-filled coupling can be used. This oil filling also aids lubrication and encourages a long service life.

Uses

The coupling is mostly used on the output of large diesel engines. It isolates vibration between engines, shafts and driven components. A major benefit can be to avoid resonance problems where systems have a critical speed that must be avoided. Use of a damped coupling can shift this frequency to an unimportant speed, outside the engine operation speed range and damp resonance peak. The Geislinger coupling's ability to easily tailor its damping is valuable here to allow tuning for a particular frequency. The nearly linear torsional stiffness makes it easy to calculate torsional vibrations.

Advantages

Disadvantages

Geislinger damper

The Geislinger damper utilizes steel leaf springs and engine oil Geislinger Damper.jpg
The Geislinger damper utilizes steel leaf springs and engine oil

A related device is the Geislinger damper. [5] This is broadly the same coupling, but both input and output shafts are connected to the same central hub. The massive outer casing is connected to this through similar leaf spring packs, but is free to move torsionally, with damping. It is used as a harmonic damper to control vibrations in shafts.

The steel springs are tuned to optimize the natural frequency of a system, and engine oil is used to reduce torsional vibrations. Geislinger uses specially developed software to select the specific damper parameters which best protect the engine crank- and camshaft, as well as intermediate and propeller shafts from damage due to critical vibratory loads. The Geislinger damper provides constant stiffness and very high damping over the damper life, independent of engine room temperature.

Related Research Articles

<span class="mw-page-title-main">Clutch</span> Mechanical device that connects and disconnects two rotating shafts or other moving parts

A clutch is a mechanical device that allows the output shaft to be disconnected from the rotating input shaft. The clutch's input shaft is typically attached to a motor, while the clutch's output shaft is connected to the mechanism that does the work.

<span class="mw-page-title-main">Coupling</span> Mechanical connection between two objects

A coupling is a device used to connect two shafts together at their ends for the purpose of transmitting power. The primary purpose of couplings is to join two pieces of rotating equipment while permitting some degree of misalignment or end movement or both. In a more general context, a coupling can also be a mechanical device that serves to connect the ends of adjacent parts or objects. Couplings do not normally allow disconnection of shafts during operation, however there are torque-limiting couplings which can slip or disconnect when some torque limit is exceeded. Selection, installation and maintenance of couplings can lead to reduced maintenance time and maintenance cost.

<span class="mw-page-title-main">Shock absorber</span> Mechanical component

A shock absorber or damper is a mechanical or hydraulic device designed to absorb and damp shock impulses. It does this by converting the kinetic energy of the shock into another form of energy which is then dissipated. Most shock absorbers are a form of dashpot.

<span class="mw-page-title-main">Car suspension</span> Suspension system for a vehicle

Suspension is the system of tires, tire air, springs, shock absorbers and linkages that connects a vehicle to its wheels and allows relative motion between the two. Suspension systems must support both road holding/handling and ride quality, which are at odds with each other. The tuning of suspensions involves finding the right compromise. It is important for the suspension to keep the road wheel in contact with the road surface as much as possible, because all the road or ground forces acting on the vehicle do so through the contact patches of the tires. The suspension also protects the vehicle itself and any cargo or luggage from damage and wear. The design of front and rear suspension of a car may be different.

<span class="mw-page-title-main">Belt-drive turntable</span>

There are three main types of phonograph turntable drives being manufactured today: the belt-drive, idler-wheel and direct-drive systems; the names are based upon the type of coupling used between the platter of the turntable and the motor. In a belt-drive turntable the motor is located off-center from the platter, either underneath it or entirely outside of it, and is connected to the platter or counter-platter by a drive belt made from elastomeric material.

<span class="mw-page-title-main">Limited-slip differential</span> Differential gearbox that limits the rotational speed difference of output shafts

A limited-slip differential (LSD) is a type of differential gear train that allows its two output shafts to rotate at different speeds but limits the maximum difference between the two shafts. Limited-slip differentials are often known by the generic trademark Positraction, a brand name owned by General Motors and originally used for its Chevrolet branded vehicles.

<span class="mw-page-title-main">Synchro</span> Variable transformers used in control systems

A synchro is, in effect, a transformer whose primary-to-secondary coupling may be varied by physically changing the relative orientation of the two windings. Synchros are often used for measuring the angle of a rotating machine such as an antenna platform or transmitting rotation. In its general physical construction, it is much like an electric motor. The primary winding of the transformer, fixed to the rotor, is excited by an alternating current, which by electromagnetic induction, causes voltages to appear between the Y-connected secondary windings fixed at 120 degrees to each other on the stator. The voltages are measured and used to determine the angle of the rotor relative to the stator.

<span class="mw-page-title-main">Constant-velocity joint</span> Mechanisms for smoothly transmitting rotation through a bend in a drive shaft

A constant-velocity joint is a mechanical coupling which allows the shafts to rotate freely and compensates for the angle between the two shafts, within a certain range, to maintain the same velocity.

Torsional vibration is the angular vibration of an object - commonly a shaft - along its axis of rotation. Torsional vibration is often a concern in power transmission systems using rotating shafts or couplings, where it can cause failures if not controlled. A second effect of torsional vibrations applies to passenger cars. Torsional vibrations can lead to seat vibrations or noise at certain speeds. Both reduce the comfort.

<span class="mw-page-title-main">Fluid coupling</span> Device used to transmit rotating mechanical power

A fluid coupling or hydraulic coupling is a hydrodynamic or 'hydrokinetic' device used to transmit rotating mechanical power. It has been used in automobile transmissions as an alternative to a mechanical clutch. It also has widespread application in marine and industrial machine drives, where variable speed operation and controlled start-up without shock loading of the power transmission system is essential.

Vibration isolation is the prevention of transmission of vibration from one component of a system to others parts of the same system, as in buildings or mechanical systems. Vibration is undesirable in many domains, primarily engineered systems and habitable spaces, and methods have been developed to prevent the transfer of vibration to such systems. Vibrations propagate via mechanical waves and certain mechanical linkages conduct vibrations more efficiently than others. Passive vibration isolation makes use of materials and mechanical linkages that absorb and damp these mechanical waves. Active vibration isolation involves sensors and actuators that produce disruptive interference that cancels-out incoming vibration.

<span class="mw-page-title-main">Impact wrench</span> Socket wrench power tool

An impact wrench is a socket wrench power tool designed to deliver high torque output with minimal exertion by the user, by storing energy in a rotating mass, then delivering it suddenly to the output shaft. It was invented by Robert H. Pott of Evansville, Indiana.

A motorcycle's suspension serves a dual purpose: contributing to the vehicle's handling and braking, and providing safety and comfort by keeping the vehicle's passengers comfortably isolated from road noise, bumps and vibrations.

Vehicles made by American Motors Corporation (AMC) and Jeep incorporated a variety of transmissions and transfer case systems. This article covers transmissions used in the following vehicle models and years:

<span class="mw-page-title-main">Jaw coupling</span> Mechanical coupling

In mechanical engineering, a jaw coupling is a type of general purpose power transmission coupling that also can be used in motion control (servo) applications. It is designed to transmit torque while damping system vibrations and accommodating misalignment, which protects other components from damage. Jaw couplings are composed of three parts: two metallic hubs and an elastomer insert called an element, but commonly referred to as a "spider". The three parts press fit together with a jaw from each hub fitted alternately with the lobes of the spider. Jaw coupling torque is transmitted through the elastomer lobes in compression.

<span class="mw-page-title-main">Vibration</span> Mechanical oscillations about an equilibrium point

Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. Vibration may be deterministic if the oscillations can be characterised precisely, or random if the oscillations can only be analysed statistically.

<span class="mw-page-title-main">Harmonic damper</span>

A harmonic damper is a device fitted to the free end of the crankshaft of an internal combustion engine to counter torsional and resonance vibrations from the crankshaft. This device must be an interference fit to the crankshaft in order to operate in an effective manner. An interference fit ensures the device moves in perfect step with the crankshaft. It is essential on engines with long crankshafts and V8 engines with cross plane cranks, or V6 and straight-three engines with uneven firing order. Harmonics and torsional vibrations can greatly reduce crankshaft life, or cause instantaneous failure if the crankshaft runs at or through an amplified resonance. Dampers are designed with a specific weight (mass) and diameter, which are dependent on the damping material/method used, to reduce mechanical Q factor, or damp, crankshaft resonances.

On maritime vessels, noise and vibration are not the same but they have the same origin and come in many forms. The methods to handle the related problems are similar, to a certain level, where most shipboard noise problems are reduced by controlling vibration.

A Schmidt coupling is a type of coupling designed to accommodate large radial displacement between two shafts. Consisting of an arrangement of links and discs—three discs rotating in unison, interconnected in series by three or more links between each pair of discs—a Schmidt coupling can adapt to very wide variations in radial displacement while running under load. Couplings can be made to allow radial displacement greater than twice the radius of the discs.

<span class="mw-page-title-main">Centrifugal pendulum absorber</span>

A centrifugal pendulum absorber is a type of tuned mass damper. It reduces the amplitude of a torsional vibration in drive trains that use a combustion engine.

References

  1. 1 2 3 "Geislinger Damper". Austria: Geislinger GmbH. Archived from the original on 2011-12-11. Retrieved 2011-12-14.
  2. 1 2 "Anniversary launch for Power Monitoring System". Maritime Journal. 29 July 2008. Archived from the original on 29 January 2013.
  3. Geislinger & Catalogue , p. 3.
  4. "Coupling products catalogue" (PDF). Austria: Geislinger GmbH. p. 4.
  5. "Geislinger Coupling". Austria: Geislinger GmbH. Archived from the original on 2011-12-11. Retrieved 2011-12-14.