This article needs additional citations for verification .(September 2011) |
A general-purpose macro processor or general purpose preprocessor is a macro processor that is not tied to or integrated with a particular language or piece of software.
A macro processor is a program that copies a stream of text from one place to another, making a systematic set of replacements as it does so. Macro processors are often embedded in other programs, such as assemblers and compilers. Sometimes they are standalone programs that can be used to process any kind of text.
Macro processors have been used for language expansion (defining new language constructs that can be expressed in terms of existing language components), for systematic text replacements that require decision making, and for text reformatting (e.g. conditional extraction of material from an HTML file).
Name | Year | Description |
---|---|---|
GPM | 1960s | One of the earliest macro processors was GPM (the General Purpose Macrogenerator). [1] This was developed at the University of Cambridge, UK, in the mid 1960s, under the direction of Christopher Strachey. |
ML/I | 1960s | One particularly important general purpose macro processor was (and still is) ML/I (Macro Language One). This was developed as part of PhD research by a Cambridge postgraduate, Peter J. Brown. ML/I operates on a character stream, and requires no special format for its input, nor any special flag characters to introduce macros. |
STAGE2 | 1960s | A contemporary of ML/I was STAGE2, [2] part of William Waite's Mobile Programming System. [3] This too is a general purpose macro processor, but it processes input a line at a time, matching each line against specified patterns; it is notable in that it is independent of character set, requiring only that the digits 0-9 are contiguous and in that order (a condition not met by some of the 6-bit and BCD character codes of the era). |
M6 | 1960s | Early macro processor developed at AT&T Bell Laboratories by Douglas McIlroy, Robert Morris and Andrew Hall. It was influenced by GPM and TRAC. Implemented in FORTRAN IV, [4] it was ported to Version 2 Unix. |
SNOBOL | 1960s | SNOBOL is a string processing language which is capable of doing most of the pre-processing which can be done by a macro processor. |
XPOP | XPOP was another attempt at a general macro processing language by Mark Halpern at IBM in the 1960s. | |
TTM | 1968 | TTM is a recursive, interpretive language designed primarily for string manipulation, text editing, macro definition and expansion, and other applications generally classified as systems programming. It was developed in 1968 by Steven Caine and E. Kent Gordon at the California Institute of Technology. It is derived, primarily, from GAP [5] and GPM. [1] |
GMP | 1970s | Another attempt was the GMP (General Macro Processor) developed in the mid-1970s by M Boule in the DLB/GC department of the CII Company along ideas from R.J. Chevance. Tested in association with the Bordeaux I University the first version ran the SIRIS8/IRIS80 System. It was ported to mini6 systems and was the main component involved in the system generation for this family of computers. The GMP processor used C2-Chomsky grammars to define the syntax of macros and used an imperative language to execute computations and proceed to macro expansion. |
M4 | 1977 | m4 was designed and written in C for Unix by Dennis Ritchie and converted to Ratfor by Brian Kernighan. [6] |
ELENA | Software: Practice and Experience, Vol. 14, pp. 519–531, Jun. 1984 | |
gema | 1995 | gema is a contextual macro processor based on pattern matching, written by David N. Gray. It replaces/enhances the concept of regular expressions by contexts. Contexts roughly corresponds to named sets of patterns. As a consequence, macros in gema closely resemble an EBNF description. [7] |
GPP | 1996 | gpp is another general macro processor written by Denis Auroux. It resembles a C preprocessor, but has more general semantics and allows for customized syntax (for instance, TeX, XHTML, and Prolog-like scripts are definable). [8] |
M5 | 1999 | m5 is a general-purpose macro processor written by William A. Ward, Jr. Unlike many macroprocessors, m5 does not directly interpret its input. Instead it uses a two-pass approach in which the first pass translates the input to an awk program, and the second pass executes the awk program to produce the final output. |
pyexpander | 2011 | pyexpander is a general-purpose macro processor based on the Python programming language. In addition to simple macro replacement it allows evaluation of arbitrary Python expressions and execution of python code. |
Text Assembler | 2014 | Text Assembler is a general-purpose text/macro processor based on the JavaScript programming language. Beyond simple macro replacement, it allows evaluating arbitrary JavaScript expressions and executing JavaScript code. It can also load JSON data models for more complex data-driven text processing tasks. [9] |
PP | 2016 | PP is a text preprocessor designed for Pandoc (and more generally Markdown and reStructuredText). PP implements: Macros, literate programming, GraphViz, PlantUML and ditaa diagrams, Bash, Cmd, PowerShell, Python and Haskell scripts. [10] |
minimac | minimac is a minimalist general purpose macro processor. It operates as a character stream filter, recursively expanding macros as they are encountered. It is unusual for a macro processor in that it uses an explicit argument stack, and user functions are defined by concatenation (similar to the Forth language). [11] | |
aa_macro | 2017 | aa_macro is an open-source character-stream-based text processing language written in Python. Text is processed in a left-to-right, inside-to-outside manner. A selection of pre-defined built-in functions provide fundamental processing mechanisms that may be used directly or as elements of user-defined styles. The language is user extensible, and wtfm, an open-source web-based document preparation wrapper for the language, is available. [12] [13] |
In computer programming, assembly language, often referred to simply as assembly and commonly abbreviated as ASM or asm, is any low-level programming language with a very strong correspondence between the instructions in the language and the architecture's machine code instructions. Assembly language usually has one statement per machine instruction (1:1), but constants, comments, assembler directives, symbolic labels of, e.g., memory locations, registers, and macros are generally also supported.
In computing, a compiler is a computer program that translates computer code written in one programming language into another language. The name "compiler" is primarily used for programs that translate source code from a high-level programming language to a low-level programming language to create an executable program.
In computer science, transclusion is the inclusion of part or all of an electronic document into one or more other documents by reference via hypertext. Transclusion is usually performed when the referencing document is displayed, and is normally automatic and transparent to the end user. The result of transclusion is a single integrated document made of parts assembled dynamically from separate sources, possibly stored on different computers in disparate places.
The Intel 8080 ("eighty-eighty") is the second 8-bit microprocessor designed and manufactured by Intel. It first appeared in April 1974 and is an extended and enhanced variant of the earlier 8008 design, although without binary compatibility. Although earlier microprocessors were commonly used in mass-produced devices such as calculators, cash registers, computer terminals, industrial robots, and other applications, the 8080 saw greater success in a wider set of applications, and is largely credited with starting the microcomputer industry.
In computer programming, a macro is a rule or pattern that specifies how a certain input should be mapped to a replacement output. Applying a macro to an input is known as macro expansion.
SNOBOL is a series of programming languages developed between 1962 and 1967 at AT&T Bell Laboratories by David J. Farber, Ralph Griswold and Ivan P. Polonsky, culminating in SNOBOL4. It was one of a number of text-string-oriented languages developed during the 1950s and 1960s; others included COMIT and TRAC.
troff, short for "typesetter roff", is the major component of a document processing system developed by Bell Labs for the Unix operating system. troff and the related nroff were both developed from the original roff.
The Zilog Z80 is an 8-bit microprocessor designed by Zilog that played an important role in the evolution of early computing. Launched in 1976 and software-compatible with the Intel 8080, it offered a compelling alternative due to its better integration and increased performance. As well as the 8080's seven registers and flags register, the Z80 had an alternate register set that duplicated them, two 16-bit index registers and additional instructions including bit manipulation and block copy/search.
In computer science, a preprocessor is a program that processes its input data to produce output that is used as input in another program. The output is said to be a preprocessed form of the input data, which is often used by some subsequent programs like compilers. The amount and kind of processing done depends on the nature of the preprocessor; some preprocessors are only capable of performing relatively simple textual substitutions and macro expansions, while others have the power of full-fledged programming languages.
The C preprocessor is the macro preprocessor for several computer programming languages, such as C, Objective-C, C++, and a variety of Fortran languages. The preprocessor provides inclusion of header files, macro expansions, conditional compilation, and line control.
PL/M, an acronym for Programming Language for Microcomputers, is a is a high-level language conceived and developed by Gary Kildall in 1973 for Hank Smith at Intel for the Intel 8008. It was later expanded for the newer Intel 8080.
m4 is a general-purpose macro processor included in most Unix-like operating systems, and is a component of the POSIX standard.
High-Level Assembly (HLA) is a language developed by Randall Hyde that allows the use of higher-level language constructs to aid both beginners and advanced assembly developers. It supports advanced data types and object-oriented programming. It uses a syntax loosely based on several high-level programming languages (HLLs), such as Pascal, Ada, Modula-2, and C++, to allow the creation of readable assembly language programs, and to allow HLL programmers to learn HLA as fast as possible.
In computer science, instruction selection is the stage of a compiler backend that transforms its middle-level intermediate representation (IR) into a low-level IR. In a typical compiler, instruction selection precedes both instruction scheduling and register allocation; hence its output IR has an infinite set of pseudo-registers and may still be – and typically is – subject to peephole optimization. Otherwise, it closely resembles the target machine code, bytecode, or assembly language.
A source-to-source translator, source-to-source compiler, transcompiler, or transpiler is a type of translator that takes the source code of a program written in a programming language as its input and produces an equivalent source code in the same or a different programming language. A source-to-source translator converts between programming languages that operate at approximately the same level of abstraction, while a traditional compiler translates from a higher level programming language to a lower level programming language. For example, a source-to-source translator may perform a translation of a program from Python to JavaScript, while a traditional compiler translates from a language like C to assembly or Java to bytecode. An automatic parallelizing compiler will frequently take in a high level language program as an input and then transform the code and annotate it with parallel code annotations or language constructs.
In computer programming, boilerplate code, or simply boilerplate, are sections of code that are repeated in multiple places with little to no variation. When using languages that are considered verbose, the programmer must write a lot of boilerplate code to accomplish only minor functionality.
A web template system in web publishing allows web designers and developers to work with web templates to automatically generate custom web pages, such as the results from a search. This reuses static web page elements while defining dynamic elements based on web request parameters. Web templates support static content, providing basic structure and appearance. Developers can implement templates from content management systems, web application frameworks, and HTML editors.
A template processor is software designed to combine templates with data to produce resulting documents or programs. The language that the templates are written in is known as a template language or templating language. For purposes of this article, a result document is any kind of formatted output, including documents, web pages, or source code, either in whole or in fragments. A template engine is ordinarily included as a part of a web template system or application framework, and may be used also as a preprocessor or filter.
The Windows software trace preprocessor is a preprocessor that simplifies the use of WMI event tracing to implement efficient software tracing in drivers and applications that target Windows 2000 and later operating systems. WPP was created by Microsoft and is included in the Windows DDK. Although WPP is wide in its applicability, it is not included in the Windows SDK, and therefore is primarily used for drivers and driver support software produced by software vendors that purchase the Windows DDK.
A binary recompiler is a compiler that takes executable binary files as input, analyzes their structure, applies transformations and optimizations, and outputs new optimized executable binaries.
Stage2 was created by Prof William Waite at the University of Colorado in the late sixties as a major component of his mobile programming system, MPS. Stage2 uses a pattern matching algorithm to match input lines of text against a set of templates. Each template is the first line of a macro and when a match is recognized the code body of that macro is processed to produce output text, error messages, or create a constructed line that is submitted for further template matching. So the process is fully recursive and quite powerful in its capabilities for text transformation. In fact, it can be used to implement a programming language compiler.