Generalized Clifford algebra

Last updated

In mathematics, a Generalized Clifford algebra (GCA) is a unital associative algebra that generalizes the Clifford algebra, and goes back to the work of Hermann Weyl, [1] who utilized and formalized these clock-and-shift operators introduced by J. J. Sylvester (1882), [2] and organized by Cartan (1898) [3] and Schwinger. [4]

Contents

Clock and shift matrices find routine applications in numerous areas of mathematical physics, providing the cornerstone of quantum mechanical dynamics in finite-dimensional vector spaces. [5] [6] [7] The concept of a spinor can further be linked to these algebras. [6]

The term Generalized Clifford Algebras can also refer to associative algebras that are constructed using forms of higher degree instead of quadratic forms. [8] [9] [10] [11]

Definition and properties

Abstract definition

The n-dimensional generalized Clifford algebra is defined as an associative algebra over a field F, generated by [12]

and

j,k,l,m = 1,...,n.

Moreover, in any irreducible matrix representation, relevant for physical applications, it is required that

j,k = 1,...,n,   and gcd . The field F is usually taken to be the complex numbers C.

More specific definition

In the more common cases of GCA, [6] the n-dimensional generalized Clifford algebra of order p has the property ωkj = ω,   for all j,k, and . It follows that

and

for all j,k,l = 1,...,n, and

is the pth root of 1.

There exist several definitions of a Generalized Clifford Algebra in the literature. [13]

Clifford algebra

In the (orthogonal) Clifford algebra, the elements follow an anticommutation rule, with ω = −1, and p = 2.

Matrix representation

The Clock and Shift matrices can be represented [14] by n×n matrices in Schwinger's canonical notation as

.

Notably, Vn = 1, VU = ωUV (the Weyl braiding relations), and W−1VW = U (the discrete Fourier transform). With e1 = V , e2 = VU, and e3 = U, one has three basis elements which, together with ω, fulfil the above conditions of the Generalized Clifford Algebra (GCA).

These matrices, V and U, normally referred to as "shift and clock matrices", were introduced by J. J. Sylvester in the 1880s. (Note that the matrices V are cyclic permutation matrices that perform a circular shift; they are not to be confused with upper and lower shift matrices which have ones only either above or below the diagonal, respectively).

Specific examples

Case n = p = 2

In this case, we have ω = −1, and

thus

,

which constitute the Pauli matrices.

Case n = p = 4

In this case we have ω = i, and

and e1, e2, e3 may be determined accordingly.

See also

Related Research Articles

In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism. The determinant of a product of matrices is the product of their determinants (the preceding property is a corollary of this one). The determinant of a matrix A is denoted det(A), det A, or |A|.

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

<span class="mw-page-title-main">Matrix multiplication</span> Mathematical operation in linear algebra

In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB.

<span class="mw-page-title-main">Cayley–Hamilton theorem</span> Every square matrix over a commutative ring satisfies its own characteristic equation

In linear algebra, the Cayley–Hamilton theorem states that every square matrix over a commutative ring satisfies its own characteristic equation.

<span class="mw-page-title-main">Symplectic group</span> Mathematical group

In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted Sp(2n, F) and Sp(n) for positive integer n and field F (usually C or R). The latter is called the compact symplectic group and is also denoted by . Many authors prefer slightly different notations, usually differing by factors of 2. The notation used here is consistent with the size of the most common matrices which represent the groups. In Cartan's classification of the simple Lie algebras, the Lie algebra of the complex group Sp(2n, C) is denoted Cn, and Sp(n) is the compact real form of Sp(2n, C). Note that when we refer to the (compact) symplectic group it is implied that we are talking about the collection of (compact) symplectic groups, indexed by their dimension n.

In mathematics, a symplectic matrix is a matrix with real entries that satisfies the condition

<span class="mw-page-title-main">Four-vector</span> 4-dimensional vector in relativity

In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.

In mathematics, the Heisenberg group, named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form

In mathematics, a block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices. Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix with a collection of horizontal and vertical lines, which break it up, or partition it, into a collection of smaller matrices. Any matrix may be interpreted as a block matrix in one or more ways, with each interpretation defined by how its rows and columns are partitioned.

In mathematics, a Casimir element is a distinguished element of the center of the universal enveloping algebra of a Lie algebra. A prototypical example is the squared angular momentum operator, which is a Casimir element of the three-dimensional rotation group.

In linear algebra, a circulant matrix is a square matrix in which all row vectors are composed of the same elements and each row vector is rotated one element to the right relative to the preceding row vector. It is a particular kind of Toeplitz matrix.

<span class="mw-page-title-main">Nodal analysis</span>

In electric circuits analysis, nodal analysis, node-voltage analysis, or the branch current method is a method of determining the voltage between "nodes" in an electrical circuit in terms of the branch currents.

In numerical linear algebra, the Jacobi method is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges. This algorithm is a stripped-down version of the Jacobi transformation method of matrix diagonalization. The method is named after Carl Gustav Jacob Jacobi.

In mathematics and physics, in particular quantum information, the term generalized Pauli matrices refers to families of matrices which generalize the properties of the Pauli matrices. Here, a few classes of such matrices are summarized.

In mathematics, specifically multilinear algebra, a dyadic or dyadic tensor is a second order tensor, written in a notation that fits in with vector algebra.

In mathematical physics, higher-dimensional gamma matrices generalize to arbitrary dimension the four-dimensional Gamma matrices of Dirac, which are a mainstay of relativistic quantum mechanics. They are utilized in relativistically invariant wave equations for fermions in arbitrary space-time dimensions, notably in string theory and supergravity. The Weyl–Brauer matrices provide an explicit construction of higher-dimensional gamma matrices for Weyl spinors. Gamma matrices also appear in generic settings in Riemannian geometry, particularly when a spin structure can be defined.

In quantum computing, the quantum Fourier transform (QFT) is a linear transformation on quantum bits, and is the quantum analogue of the discrete Fourier transform. The quantum Fourier transform is a part of many quantum algorithms, notably Shor's algorithm for factoring and computing the discrete logarithm, the quantum phase estimation algorithm for estimating the eigenvalues of a unitary operator, and algorithms for the hidden subgroup problem. The quantum Fourier transform was discovered by Don Coppersmith.

In mathematics, Manin matrices, named after Yuri Manin who introduced them around 1987–88, are a class of matrices with elements in a not-necessarily commutative ring, which in a certain sense behave like matrices whose elements commute. In particular there is natural definition of the determinant for them and most linear algebra theorems like Cramer's rule, Cayley–Hamilton theorem, etc. hold true for them. Any matrix with commuting elements is a Manin matrix. These matrices have applications in representation theory in particular to Capelli's identity, Yangian and quantum integrable systems.

<span class="mw-page-title-main">Bargmann–Wigner equations</span> Wave equation for arbitrary spin particles

In relativistic quantum mechanics and quantum field theory, the Bargmann–Wigner equations describe free particles with non-zero mass and arbitrary spin j, an integer for bosons or half-integer for fermions. The solutions to the equations are wavefunctions, mathematically in the form of multi-component spinor fields.

References

  1. Weyl, H. (1927). "Quantenmechanik und Gruppentheorie". Zeitschrift für Physik. 46 (1–2): 1–46. Bibcode:1927ZPhy...46....1W. doi:10.1007/BF02055756. S2CID   121036548.
    (1950) [1931]. The Theory of Groups and Quantum Mechanics . Dover. ISBN   9780486602691.
  2. Sylvester, J. J. (1882), A word on Nonions, Johns Hopkins University Circulars, vol. I, pp. 241–2; ibid II (1883) 46; ibid III (1884) 7–9. Summarized in The Collected Mathematics Papers of James Joseph Sylvester (Cambridge University Press, 1909) v III . online and further.
  3. Cartan, E. (1898). "Les groupes bilinéaires et les systèmes de nombres complexes" (PDF). Annales de la Faculté des Sciences de Toulouse. 12 (1): B65–B99.
  4. Schwinger, J. (April 1960). "Unitary operator bases". Proc Natl Acad Sci U S A. 46 (4): 570–9. Bibcode:1960PNAS...46..570S. doi: 10.1073/pnas.46.4.570 . PMC   222876 . PMID   16590645.
    (1960). "Unitary transformations and the action principle". Proc Natl Acad Sci U S A. 46 (6): 883–897. Bibcode:1960PNAS...46..883S. doi: 10.1073/pnas.46.6.883 . PMC   222951 . PMID   16590686.
  5. Santhanam, T. S.; Tekumalla, A. R. (1976). "Quantum mechanics in finite dimensions". Foundations of Physics. 6 (5): 583. Bibcode:1976FoPh....6..583S. doi:10.1007/BF00715110. S2CID   119936801.
  6. 1 2 3 See for example: Granik, A.; Ross, M. (1996). "On a new basis for a Generalized Clifford Algebra and its application to quantum mechanics". In Ablamowicz, R.; Parra, J.; Lounesto, P. (eds.). Clifford Algebras with Numeric and Symbolic Computation Applications. Birkhäuser. pp. 101–110. ISBN   0-8176-3907-1.
  7. Kwaśniewski, A.K. (1999). "On generalized Clifford algebra C(n)4 and GLq(2;C) quantum group". Advances in Applied Clifford Algebras. 9 (2): 249–260. arXiv: math/0403061 . doi:10.1007/BF03042380. S2CID   117093671.
  8. Tesser, Steven Barry (2011). "Generalized Clifford algebras and their representations". In Micali, A.; Boudet, R.; Helmstetter, J. (eds.). Clifford algebras and their applications in mathematical physics . Springer. pp.  133–141. ISBN   978-90-481-4130-2.
  9. Childs, Lindsay N. (30 May 2007). "Linearizing of n-ic forms and generalized Clifford algebras". Linear and Multilinear Algebra. 5 (4): 267–278. doi:10.1080/03081087808817206.
  10. Pappacena, Christopher J. (July 2000). "Matrix pencils and a generalized Clifford algebra". Linear Algebra and Its Applications. 313 (1–3): 1–20. doi: 10.1016/S0024-3795(00)00025-2 .
  11. Chapman, Adam; Kuo, Jung-Miao (April 2015). "On the generalized Clifford algebra of a monic polynomial". Linear Algebra and Its Applications. 471: 184–202. arXiv: 1406.1981 . doi:10.1016/j.laa.2014.12.030. S2CID   119280952.
  12. For a serviceable review, see Vourdas, A. (2004). "Quantum systems with finite Hilbert space". Reports on Progress in Physics. 67 (3): 267–320. Bibcode:2004RPPh...67..267V. doi:10.1088/0034-4885/67/3/R03.
  13. See for example the review provided in: Smith, Tara L. "Decomposition of Generalized Clifford Algebras" (PDF). Archived from the original (PDF) on 2010-06-12.
  14. Ramakrishnan, Alladi (1971). "Generalized Clifford Algebra and its applications – A new approach to internal quantum numbers". Proceedings of the Conference on Clifford algebra, its Generalization and Applications, January 30–February 1, 1971 (PDF). Madras: Matscience. pp. 87–96.

Further reading