Generalized Jacobian

Last updated

In algebraic geometry a generalized Jacobian is a commutative algebraic group associated to a curve with a divisor, generalizing the Jacobian variety of a complete curve. They were introduced by Maxwell Rosenlicht in 1954, and can be used to study ramified coverings of a curve, with abelian Galois group. Generalized Jacobians of a curve are extensions of the Jacobian of the curve by a commutative affine algebraic group, giving nontrivial examples of Chevalley's structure theorem.

Contents

Definition

Suppose C is a complete nonsingular curve, m an effective divisor on C, S is the support of m, and P is a fixed base point on C not in S. The generalized Jacobian Jm is a commutative algebraic group with a rational map f from C to Jm such that:

Moreover Jm is the universal group with these properties, in the sense that any rational map from C to a group with the properties above factors uniquely through Jm. The group Jm does not depend on the choice of base point P, though changing P changes that map f by a translation.

Structure of the generalized Jacobian

For m = 0 the generalized Jacobian Jm is just the usual Jacobian J, an abelian variety of dimension g, the genus of C.

For m a nonzero effective divisor the generalized Jacobian is an extension of J by a connected commutative affine algebraic group Lm of dimension deg(m)−1. So we have an exact sequence

0 → LmJmJ → 0

The group Lm is a quotient

0 → Gm → ΠUPi(ni)Lm → 0

of a product of groups Ri by the multiplicative group Gm of the underlying field. The product runs over the points Pi in the support of m, and the group UPi(ni) is the group of invertible elements of the local ring modulo those that are 1 mod Pini. The group UPi(ni) has dimension ni, the number of times Pi occurs in m. It is the product of the multiplicative group Gm by a unipotent group of dimension ni−1, which in characteristic 0 is isomorphic to a product of ni−1 additive groups.

Complex generalized Jacobians

Over the complex numbers, the algebraic structure of the generalized Jacobian determines an analytic structure of the generalized Jacobian making it a complex Lie group.

The analytic subgroup underlying the generalized Jacobian can be described as follows. (This does not always determine the algebraic structure as two non-isomorphic commutative algebraic groups may be isomorphic as analytic groups.) Suppose that C is a curve with an effective divisor m with support S. There is a natural map from the homology group H1(C  S) to the dual Ω(−m)* of the complex vector space Ω(−m) (1-forms with poles on m) induced by the integral of a 1-form over a 1-cycle. The analytic generalized Jacobian is then the quotient group Ω(−m)*/H1(C  S).

Related Research Articles

<span class="mw-page-title-main">Abelian variety</span> A projective algebraic variety that is also an algebraic group

In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for much research on other topics in algebraic geometry and number theory.

<span class="mw-page-title-main">Algebraic group</span> Algebraic variety with a group structure

In mathematics, an algebraic group is an algebraic variety endowed with a group structure that is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory.

<span class="mw-page-title-main">Algebraic variety</span> Mathematical object studied in the field of algebraic geometry

Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.

<span class="mw-page-title-main">Algebraic curve</span> Curve defined as zeros of polynomials

In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.

<span class="mw-page-title-main">Projective variety</span>

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

In mathematics, restriction of scalars is a functor which, for any finite extension of fields L/k and any algebraic variety X over L, produces another variety ResL/kX, defined over k. It is useful for reducing questions about varieties over large fields to questions about more complicated varieties over smaller fields.

In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

In mathematics, the Brauer group of a field K is an abelian group whose elements are Morita equivalence classes of central simple algebras over K, with addition given by the tensor product of algebras. It was defined by the algebraist Richard Brauer.

In mathematics, the Jacobian varietyJ(C) of a non-singular algebraic curve C of genus g is the moduli space of degree 0 line bundles. It is the connected component of the identity in the Picard group of C, hence an abelian variety.

<span class="mw-page-title-main">Group scheme</span>

In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance. The category of group schemes is somewhat better behaved than that of group varieties, since all homomorphisms have kernels, and there is a well-behaved deformation theory. Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, since they come up in contexts of Galois representations and moduli problems. The initial development of the theory of group schemes was due to Alexander Grothendieck, Michel Raynaud and Michel Demazure in the early 1960s.

In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.

In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors. Both are derived from the notion of divisibility in the integers and algebraic number fields.

In mathematics, the Picard group of a ringed space X, denoted by Pic(X), is the group of isomorphism classes of invertible sheaves (or line bundles) on X, with the group operation being tensor product. This construction is a global version of the construction of the divisor class group, or ideal class group, and is much used in algebraic geometry and the theory of complex manifolds.

In mathematics, specifically in ring theory, a torsion element is an element of a module that yields zero when multiplied by some non-zero-divisor of the ring. The torsion submodule of a module is the submodule formed by the torsion elements. A torsion module is a module that equals its torsion submodule. A module is torsion-free if its torsion submodule comprises only the zero element.

In mathematics, an elliptic surface is a surface that has an elliptic fibration, in other words a proper morphism with connected fibers to an algebraic curve such that almost all fibers are smooth curves of genus 1. This is equivalent to the generic fiber being a smooth curve of genus one. This follows from proper base change.

In mathematics, the Abel–Jacobi map is a construction of algebraic geometry which relates an algebraic curve to its Jacobian variety. In Riemannian geometry, it is a more general construction mapping a manifold to its Jacobi torus. The name derives from the theorem of Abel and Jacobi that two effective divisors are linearly equivalent if and only if they are indistinguishable under the Abel–Jacobi map.

<span class="mw-page-title-main">Noncommutative algebraic geometry</span>

Noncommutative algebraic geometry is a branch of mathematics, and more specifically a direction in noncommutative geometry, that studies the geometric properties of formal duals of non-commutative algebraic objects such as rings as well as geometric objects derived from them.

This is a glossary of algebraic geometry.

In algebraic geometry, Chevalley's structure theorem states that a smooth connected algebraic group over a perfect field has a unique normal smooth connected affine algebraic subgroup such that the quotient is an abelian variety. It was proved by Chevalley (1960), Barsotti, and Rosenlicht (1956).

References