Generalized Verma module

Last updated

In mathematics, generalized Verma modules are a generalization of a (true) Verma module, [1] and are objects in the representation theory of Lie algebras. They were studied originally by James Lepowsky in the 1970s. The motivation for their study is that their homomorphisms correspond to invariant differential operators over generalized flag manifolds. The study of these operators is an important part of the theory of parabolic geometries.

Contents

Definition

Let be a semisimple Lie algebra and a parabolic subalgebra of . For any irreducible finite-dimensional representation of we define the generalized Verma module to be the relative tensor product

.

The action of is left multiplication in .

If λ is the highest weight of V, we sometimes denote the Verma module by .

Note that makes sense only for -dominant and -integral weights (see weight) .

It is well known that a parabolic subalgebra of determines a unique grading so that . Let . It follows from the Poincaré–Birkhoff–Witt theorem that, as a vector space (and even as a -module and as a -module),

.

In further text, we will denote a generalized Verma module simply by GVM.

Properties of GVMs

GVM's are highest weight modules and their highest weight λ is the highest weight of the representation V. If is the highest weight vector in V, then is the highest weight vector in .

GVM's are weight modules, i.e. they are direct sum of its weight spaces and these weight spaces are finite-dimensional.

As all highest weight modules, GVM's are quotients of Verma modules. The kernel of the projection is

where is the set of those simple roots α such that the negative root spaces of root are in (the set S determines uniquely the subalgebra ), is the root reflection with respect to the root α and is the affine action of on λ. It follows from the theory of (true) Verma modules that is isomorphic to a unique submodule of . In (1), we identified . The sum in (1) is not direct.

In the special case when , the parabolic subalgebra is the Borel subalgebra and the GVM coincides with (true) Verma module. In the other extremal case when , and the GVM is isomorphic to the inducing representation V.

The GVM is called regular, if its highest weight λ is on the affine Weyl orbit of a dominant weight . In other word, there exist an element w of the Weyl group W such that

where is the affine action of the Weyl group.

The Verma module is called singular, if there is no dominant weight on the affine orbit of λ. In this case, there exists a weight so that is on the wall of the fundamental Weyl chamber (δ is the sum of all fundamental weights).

Homomorphisms of GVMs

By a homomorphism of GVMs we mean -homomorphism.

For any two weights a homomorphism

may exist only if and are linked with an affine action of the Weyl group of the Lie algebra . This follows easily from the Harish-Chandra theorem on infinitesimal central characters.

Unlike in the case of (true) Verma modules, the homomorphisms of GVM's are in general not injective and the dimension

may be larger than one in some specific cases.

If is a homomorphism of (true) Verma modules, resp. is the kernels of the projection , resp. , then there exists a homomorphism and f factors to a homomorphism of generalized Verma modules . Such a homomorphism (that is a factor of a homomorphism of Verma modules) is called standard. However, the standard homomorphism may be zero in some cases.

Standard

Let us suppose that there exists a nontrivial homomorphism of true Verma modules . Let be the set of those simple roots α such that the negative root spaces of root are in (like in section Properties). The following theorem is proved by Lepowsky: [2]

The standard homomorphism is zero if and only if there exists such that is isomorphic to a submodule of ( is the corresponding root reflection and is the affine action).

The structure of GVMs on the affine orbit of a -dominant and -integral weight can be described explicitly. If W is the Weyl group of , there exists a subset of such elements, so that is -dominant. It can be shown that where is the Weyl group of (in particular, does not depend on the choice of ). The map is a bijection between and the set of GVM's with highest weights on the affine orbit of . Let as suppose that , and in the Bruhat ordering (otherwise, there is no homomorphism of (true) Verma modules and the standard homomorphism does not make sense, see Homomorphisms of Verma modules).

The following statements follow from the above theorem and the structure of :

Theorem. If for some positive root and the length (see Bruhat ordering) l(w')=l(w)+1, then there exists a nonzero standard homomorphism .

Theorem. The standard homomorphism is zero if and only if there exists such that and .

However, if is only dominant but not integral, there may still exist -dominant and -integral weights on its affine orbit.

The situation is even more complicated if the GVM's have singular character, i.e. there and are on the affine orbit of some such that is on the wall of the fundamental Weyl chamber.

Nonstandard

A homomorphism is called nonstandard, if it is not standard. It may happen that the standard homomorphism of GVMs is zero but there still exists a nonstandard homomorphism.

Bernstein–Gelfand–Gelfand resolution

Examples

See also

Related Research Articles

In the mathematical field of representation theory, a weight of an algebra A over a field F is an algebra homomorphism from A to F, or equivalently, a one-dimensional representation of A over F. It is the algebra analogue of a multiplicative character of a group. The importance of the concept, however, stems from its application to representations of Lie algebras and hence also to representations of algebraic and Lie groups. In this context, a weight of a representation is a generalization of the notion of an eigenvalue, and the corresponding eigenspace is called a weight space.

<span class="mw-page-title-main">Quantum group</span> Algebraic construct of interest in theoretical physics

In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups, compact matrix quantum groups, and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group.

<span class="mw-page-title-main">Semisimple Lie algebra</span> Direct sum of simple Lie algebras

In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras.

Verma modules, named after Daya-Nand Verma, are objects in the representation theory of Lie algebras, a branch of mathematics.

In quantum field theory, the 't Hooft loop is a magnetic analogue of the Wilson loop for which spatial loops give rise to thin loops of magnetic flux associated with magnetic vortices. They play the role of a disorder parameter for the Higgs phase in pure gauge theory. Consistency conditions between electric and magnetic charges limit the possible 't Hooft loops that can be used, similarly to the way that the Dirac quantization condition limits the set of allowed magnetic monopoles. They were first introduced by Gerard 't Hooft in 1978 in the context of possible phases that gauge theories admit.

In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by Hermann Weyl. There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula.

In mathematics, the Harish-Chandra isomorphism, introduced by Harish-Chandra (1951), is an isomorphism of commutative rings constructed in the theory of Lie algebras. The isomorphism maps the center Z(U ) of the universal enveloping algebra U(g) of a reductive Lie algebra g to the elements S(h)W of the symmetric algebra S(h) of a Cartan subalgebra h that are invariant under the Weyl group W.

An algebraic character is a formal expression attached to a module in representation theory of semisimple Lie algebras that generalizes the character of a finite-dimensional representation and is analogous to the Harish-Chandra character of the representations of semisimple Lie groups.

In mathematics, Macdonald polynomialsPλ(x; t,q) are a family of orthogonal symmetric polynomials in several variables, introduced by Macdonald in 1987. He later introduced a non-symmetric generalization in 1995. Macdonald originally associated his polynomials with weights λ of finite root systems and used just one variable t, but later realized that it is more natural to associate them with affine root systems rather than finite root systems, in which case the variable t can be replaced by several different variables t=(t1,...,tk), one for each of the k orbits of roots in the affine root system. The Macdonald polynomials are polynomials in n variables x=(x1,...,xn), where n is the rank of the affine root system. They generalize many other families of orthogonal polynomials, such as Jack polynomials and Hall–Littlewood polynomials and Askey–Wilson polynomials, which in turn include most of the named 1-variable orthogonal polynomials as special cases. Koornwinder polynomials are Macdonald polynomials of certain non-reduced root systems. They have deep relationships with affine Hecke algebras and Hilbert schemes, which were used to prove several conjectures made by Macdonald about them.

In mathematics, the Littelmann path model is a combinatorial device due to Peter Littelmann for computing multiplicities without overcounting in the representation theory of symmetrisable Kac–Moody algebras. Its most important application is to complex semisimple Lie algebras or equivalently compact semisimple Lie groups, the case described in this article. Multiplicities in irreducible representations, tensor products and branching rules can be calculated using a coloured directed graph, with labels given by the simple roots of the Lie algebra.

In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group G with compact subgroup K that arises as the matrix coefficient of a K-invariant vector in an irreducible representation of G. The key examples are the matrix coefficients of the spherical principal series, the irreducible representations appearing in the decomposition of the unitary representation of G on L2(G/K). In this case the commutant of G is generated by the algebra of biinvariant functions on G with respect to K acting by right convolution. It is commutative if in addition G/K is a symmetric space, for example when G is a connected semisimple Lie group with finite centre and K is a maximal compact subgroup. The matrix coefficients of the spherical principal series describe precisely the spectrum of the corresponding C* algebra generated by the biinvariant functions of compact support, often called a Hecke algebra. The spectrum of the commutative Banach *-algebra of biinvariant L1 functions is larger; when G is a semisimple Lie group with maximal compact subgroup K, additional characters come from matrix coefficients of the complementary series, obtained by analytic continuation of the spherical principal series.

In mathematics, the Plancherel theorem for spherical functions is an important result in the representation theory of semisimple Lie groups, due in its final form to Harish-Chandra. It is a natural generalisation in non-commutative harmonic analysis of the Plancherel formula and Fourier inversion formula in the representation theory of the group of real numbers in classical harmonic analysis and has a similarly close interconnection with the theory of differential equations. It is the special case for zonal spherical functions of the general Plancherel theorem for semisimple Lie groups, also proved by Harish-Chandra. The Plancherel theorem gives the eigenfunction expansion of radial functions for the Laplacian operator on the associated symmetric space X; it also gives the direct integral decomposition into irreducible representations of the regular representation on L2(X). In the case of hyperbolic space, these expansions were known from prior results of Mehler, Weyl and Fock.

In representation theory, a branch of mathematics, the Kostant partition function, introduced by Bertram Kostant, of a root system is the number of ways one can represent a vector (weight) as a non-negative integer linear combination of the positive roots . Kostant used it to rewrite the Weyl character formula as a formula for the multiplicity of a weight of an irreducible representation of a semisimple Lie algebra. An alternative formula, that is more computationally efficient in some cases, is Freudenthal's formula.

In the representation theory of semisimple Lie algebras, Category O is a category whose objects are certain representations of a semisimple Lie algebra and morphisms are homomorphisms of representations.

In algebra, Weyl's theorem on complete reducibility is a fundamental result in the theory of Lie algebra representations. Let be a semisimple Lie algebra over a field of characteristic zero. The theorem states that every finite-dimensional module over is semisimple as a module

This is a glossary of representation theory in mathematics.

In representation theory, a branch of mathematics, the theorem of the highest weight classifies the irreducible representations of a complex semisimple Lie algebra . There is a closely related theorem classifying the irreducible representations of a connected compact Lie group . The theorem states that there is a bijection

<span class="mw-page-title-main">Glossary of Lie groups and Lie algebras</span>

This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.

<span class="mw-page-title-main">Representation theory of semisimple Lie algebras</span>

In mathematics, the representation theory of semisimple Lie algebras is one of the crowning achievements of the theory of Lie groups and Lie algebras. The theory was worked out mainly by E. Cartan and H. Weyl and because of that, the theory is also known as the Cartan–Weyl theory. The theory gives the structural description and classification of a finite-dimensional representation of a semisimple Lie algebra ; in particular, it gives a way to parametrize irreducible finite-dimensional representations of a semisimple Lie algebra, the result known as the theorem of the highest weight.

In mathematics, the Weyl integration formula, introduced by Hermann Weyl, is an integration formula for a compact connected Lie group G in terms of a maximal torus T. Precisely, it says there exists a real-valued continuous function u on T such that for every class function f on G:

References

  1. Named after Daya-Nand Verma.
  2. Lepowsky J., A generalization of the Bernstein-Gelfand-Gelfand resolution, J. Algebra, 49 (1977), 496-511.
  3. Penedones, João; Trevisani, Emilio; Yamazaki, Masahito (2016). "Recursion relations for conformal blocks". Journal of High Energy Physics. 2016 (9). doi: 10.1007/JHEP09(2016)070 . ISSN   1029-8479.