Giant resonance

Last updated

In nuclear physics, giant resonance is a high-frequency collective excitation of atomic nuclei, as a property of many-body quantum systems. In the macroscopic interpretation of such an excitation in terms of an oscillation, the most prominent giant resonance is a collective oscillation of all protons against all neutrons in a nucleus.

Contents

In 1947, G. C. Baldwin and G. S. Klaiber observed the giant dipole resonance (GDR) in photonuclear reactions, [1] [2] and in 1972 the giant quadrupole resonance (GQR) was discovered, [3] and in 1977 the giant monopole resonance (GMR) was discovered in medium and heavy nuclei. [4]

Giant dipole resonance

Giant dipole resonances may result in a number of de-excitation events, such as nuclear fission, emission of neutrons or gamma rays, or combinations of these.

Giant dipole resonances can be caused by any mechanism that imparts enough energy to the nucleus. Classical causes are irradiation with gamma rays at energies from 7 to 40 MeV, which couple to nuclei and either cause or increase the dipole moment of the nucleus by adding energy that separates charges in the nucleus. The process is the inverse of gamma decay, but the energies involved are typically much larger, and the dipole moments induced are larger than occur in the excited nuclear states that cause the average gamma decay.

High energy electrons of >50 MeV may cause the same phenomenon, by coupling to the nucleus via a "virtual gamma photon", in a nuclear reaction that is the inverse (i.e., reverse) of internal conversion decay.

See also

Related Research Articles

<span class="mw-page-title-main">Neutron</span> Subatomic particle with no charge

The neutron is a subatomic particle, symbol
n
or
n0
, that has no electric charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave similarly within the nucleus, they are both referred to as nucleons. Nucleons have a mass of approximately one atomic mass unit, or dalton. Their properties and interactions are described by nuclear physics. Protons and neutrons are not elementary particles; each is composed of three quarks.

<span class="mw-page-title-main">Nuclear physics</span> Field of physics that studies atomic nuclei

Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter.

<span class="mw-page-title-main">Neutron activation analysis</span> Method used for determining the concentrations of elements in many materials

Neutron activation analysis (NAA) is a nuclear process used for determining the concentrations of elements in many materials. NAA allows discrete sampling of elements as it disregards the chemical form of a sample, and focuses solely on atomic nuclei. The method is based on neutron activation and thus requires a neutron source. The sample is bombarded with neutrons, causing its constituent elements to form radioactive isotopes. The radioactive emissions and radioactive decay paths for each element have long been studied and determined. Using this information, it is possible to study spectra of the emissions of the radioactive sample, and determine the concentrations of the various elements within it. A particular advantage of this technique is that it does not destroy the sample, and thus has been used for the analysis of works of art and historical artifacts. NAA can also be used to determine the activity of a radioactive sample.

<span class="mw-page-title-main">Nuclear fission</span> Nuclear reaction splitting an atom into multiple parts

Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radioactive decay.

<span class="mw-page-title-main">Electron capture</span> Process in which a proton-rich nuclide absorbs an inner atomic electron

Electron capture is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. This process thereby changes a nuclear proton to a neutron and simultaneously causes the emission of an electron neutrino.

<span class="mw-page-title-main">Nuclear isomer</span> Metastable excited state of a nuclide

A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy excited state levels (higher energy levels). "Metastable" describes nuclei whose excited states have half-lives 100 to 1000 times longer than the half-lives of the excited nuclear states that decay with a "prompt" half life (ordinarily on the order of 10−12 seconds). The term "metastable" is usually restricted to isomers with half-lives of 10−9 seconds or longer. Some references recommend 5 × 10−9 seconds to distinguish the metastable half life from the normal "prompt" gamma-emission half-life. Occasionally the half-lives are far longer than this and can last minutes, hours, or years. For example, the 180m
73
Ta
nuclear isomer survives so long (at least 1015 years) that it has never been observed to decay spontaneously. The half-life of a nuclear isomer can even exceed that of the ground state of the same nuclide, as shown by 180m
73
Ta
as well as 186m
75
Re
, 192m2
77
Ir
, 210m
83
Bi
, 212m
84
Po
, 242m
95
Am
and multiple holmium isomers.

<span class="mw-page-title-main">Neutron source</span> Device that emits neutrons

A neutron source is any device that emits neutrons, irrespective of the mechanism used to produce the neutrons. Neutron sources are used in physics, engineering, medicine, nuclear weapons, petroleum exploration, biology, chemistry, and nuclear power. Neutron source variables include the energy of the neutrons emitted by the source, the rate of neutrons emitted by the source, the size of the source, the cost of owning and maintaining the source, and government regulations related to the source.

<span class="mw-page-title-main">Neutron emission</span> Type of radioactive decay

Neutron emission is a mode of radioactive decay in which one or more neutrons are ejected from a nucleus. It occurs in the most neutron-rich/proton-deficient nuclides, and also from excited states of other nuclides as in photoneutron emission and beta-delayed neutron emission. As only a neutron is lost by this process the number of protons remains unchanged, and an atom does not become an atom of a different element, but a different isotope of the same element.

<span class="mw-page-title-main">Spontaneous fission</span> Form of radioactive decay

Spontaneous fission (SF) is a form of radioactive decay in which a heavy atomic nucleus splits into two or more lighter nuclei. In contrast to induced fission, there is no inciting particle to trigger the decay; it is a purely probabilistic process.

<span class="mw-page-title-main">Nuclear reaction</span> Transformation of a nuclide to another

In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a transformation of at least one nuclide to another. If a nucleus interacts with another nucleus or particle, they then separate without changing the nature of any nuclide, the process is simply referred to as a type of nuclear scattering, rather than a nuclear reaction.

<span class="mw-page-title-main">Internal conversion</span> Process where an excited nucleus ejects an orbital electron from its atom

Internal conversion is an atomic decay process where an excited nucleus interacts electromagnetically with one of the orbital electrons of an atom. This causes the electron to be emitted (ejected) from the atom. Thus, in internal conversion, a high-energy electron is emitted from the excited atom, but not from the nucleus. For this reason, the high-speed electrons resulting from internal conversion are not called beta particles, since the latter come from beta decay, where they are newly created in the nuclear decay process.

In nuclear engineering, a delayed neutron is a neutron emitted after a nuclear fission event, by one of the fission products, any time from a few milliseconds to a few minutes after the fission event. Neutrons born within 10−14 seconds of the fission are termed "prompt neutrons".

<span class="mw-page-title-main">Neutron capture</span> Atomic nuclear process

Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, which are repelled electrostatically.

<span class="mw-page-title-main">Cluster decay</span> Nuclear decay in which an atomic nucleus emits a small cluster of neutrons and protons

Cluster decay, also named heavy particle radioactivity, heavy ion radioactivity or heavy cluster decay, is a rare type of nuclear decay in which an atomic nucleus emits a small "cluster" of neutrons and protons, more than in an alpha particle, but less than a typical binary fission fragment. Ternary fission into three fragments also produces products in the cluster size.

Yrast is a technical term in nuclear physics that refers to a state of a nucleus with a minimum of energy for a given angular momentum. Yr is a Swedish adjective sharing the same root as the English whirl. Yrast is the superlative of yr and can be translated whirlingest, although it literally means "dizziest" or "most bewildered". The yrast levels are vital to understanding reactions, such as off-center heavy ion collisions, that result in high-spin states.

<span class="mw-page-title-main">Gamma ray</span> Penetrating form of electromagnetic radiation

A gamma ray, also known as gamma radiation (symbol
γ
), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically shorter than those of X-rays. With frequencies above 30 exahertz (3×1019 Hz) and wavelengths less than 10 picometers (1×10−11 m), gamma ray photons have the highest photon energy of any form of electromagnetic radiation. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation gamma rays based on their relatively strong penetration of matter; in 1900, he had already named two less penetrating types of decay radiation (discovered by Henri Becquerel) alpha rays and beta rays in ascending order of penetrating power.

<span class="mw-page-title-main">Photofission</span> Fission of a nucleus via absorption of a gamma ray

Photofission is a process in which a nucleus, after absorbing a gamma ray, undergoes nuclear fission and splits into two or more fragments.

Neutron stimulated emission computed tomography (NSECT) uses induced gamma emission through neutron inelastic scattering to generate images of the spatial distribution of elements in a sample.

A gamma-ray laser, or graser, is a hypothetical device that would produce coherent gamma rays, just as an ordinary laser produces coherent rays of visible light. Potential applications for gamma-ray lasers include medical imaging, spacecraft propulsion, and cancer treatment.

George Curriden Baldwin was an American theoretical and experimental physicist. He was a professor of nuclear engineering at Rensselaer Polytechnic Institute and a scientist working at the General Electric Research Laboratory and at the Los Alamos National Laboratory. He wrote a book on Nonlinear Optics and authored or co-authored over 130 technical papers.

References

  1. Baldwin, G.; Klaiber, G. (1947). "Photo-Fission in Heavy Elements". Physical Review. 71 (1): 3–10. Bibcode:1947PhRv...71....3B. doi:10.1103/PhysRev.71.3.
  2. Chomaz, section 2.1
  3. Chomaz, section 2.2.1.1
  4. Chomaz, section 2.2.2.1

Further reading