Gibbard's theorem

Last updated

In the fields of mechanism design and social choice theory, Gibbard's theorem is a result proven by philosopher Allan Gibbard in 1973. [1] It states that for any deterministic process of collective decision, at least one of the following three properties must hold:

Contents

  1. The process is dictatorial, i.e. there is a single voter whose vote chooses the outcome.
  2. The process limits the possible outcomes to two options only.
  3. The process is not straightforward; the optimal ballot for a voter depends on their beliefs about other voters' ballots.

A corollary of this theorem is the Gibbard–Satterthwaite theorem about voting rules. The key difference between the two theorems is that Gibbard–Satterthwaite applies only to ranked voting. Because of its broader scope, Gibbard's theorem makes no claim about whether voters need to reverse their ranking of candidates, only that their optimal ballots depend on the other voters' ballots. [note 1]

Gibbard's theorem is more general, and considers processes of collective decision that may not be ordinal: for example, voting systems where voters assign grades to or otherwise rate candidates (cardinal voting). Gibbard's theorem can be proven using Arrow's impossibility theorem.[ citation needed ]

Gibbard's theorem is itself generalized by Gibbard's 1978 theorem [3] and Hylland's theorem, [4] which extend these results to non-deterministic processes, i.e. where the outcome may not only depend on the agents' actions but may also involve an element of chance.

Gibbard's theorem assumes the collective decision results in exactly one winner and does not apply to multi-winner voting. A similar result for multi-winner voting is the Duggan–Schwartz theorem.

Overview

Consider some voters , and who wish to select an option among three alternatives: , and . Assume they use approval voting: each voter assigns to each candidate the grade 1 (approval) or 0 (withhold approval). For example, is an authorized ballot: it means that the voter approves of candidates and but does not approve of candidate . Once the ballots are collected, the candidate with highest total grade is declared the winner. Ties between candidates are broken by alphabetical order: for example, if there is a tie between candidates and , then wins.

Assume that voter prefers alternative , then and then . Which ballot will best defend her opinions? For example, consider the two following situations.

To sum up, voter faces a strategic voting dilemma: depending on the ballots that the other voters will cast, or can be a ballot that best defends her opinions. We then say that approval voting is not strategyproof: once the voter has identified her own preferences, she does not have a ballot at her disposal that best defends her opinions in all situations; she needs to act strategically, possibly by spying over the other voters to determine how they intend to vote.

Gibbard's theorem states that a deterministic process of collective decision cannot be strategyproof, except possibly in two cases: if there is a distinguished agent who has a dictatorial power, or if the process limits the outcome to two possible options only.

Formal statement

Let be the set of alternatives, which can also be called candidates in a context of voting. Let be the set of agents, which can also be called players or voters, depending on the context of application. For each agent , let be a set that represents the available strategies for agent ; assume that is finite. Let be a function that, to each -tuple of strategies , maps an alternative. The function is called a game form. In other words, a game form is essentially defined like an n-player game, but with no utilities associated to the possible outcomes: it describes the procedure only, without specifying a priori the gain that each agent would get from each outcome.

We say that is strategyproof (originally called: straightforward) if for any agent and for any strict weak order over the alternatives, there exists a strategy that is dominant for agent when she has preferences : there is no profile of strategies for the other agents such that another strategy , different from , would lead to a strictly better outcome (in the sense of ). This property is desirable for a democratic decision process: it means that once the agent has identified her own preferences , she can choose a strategy that best defends her preferences, with no need to know or guess the strategies chosen by the other agents.

We let and denote by the range of , i.e. the set of the possible outcomes of the game form. For example, we say that has at least 3 possible outcomes if and only if the cardinality of is 3 or more. Since the strategy sets are finite, is finite also; thus, even if the set of alternatives is not assumed to be finite, the subset of possible outcomes is necessarily so.

We say that is dictatorial if there exists an agent who is a dictator, in the sense that for any possible outcome , agent has a strategy at her disposal that ensures that the result is , whatever the strategies chosen by the other agents.

Gibbard's theorem  If a game form is not dictatorial and has at least 3 possible outcomes, then it is not strategyproof.

Examples

Serial dictatorship

We assume that each voter communicates a strict weak order over the candidates. The serial dictatorship is defined as follows. If voter 1 has a unique most-liked candidate, then this candidate is elected. Otherwise, possible outcomes are restricted to his ex-aequo most-liked candidates and the other candidates are eliminated. Then voter 2's ballot is examined: if he has a unique best-liked candidate among the non-eliminated ones, then this candidate is elected. Otherwise, the list of possible outcomes is reduced again, etc. If there is still several non-eliminated candidates after all ballots have been examined, then an arbitrary tie-breaking rule is used.

This game form is strategyproof: whatever the preferences of a voter, he has a dominant strategy that consists in declaring his sincere preference order. It is also dictatorial, and its dictator is voter 1: if he wishes to see candidate elected, then he just has to communicate a preference order where is the unique most-liked candidate.

Simple majority vote

If there are only 2 possible outcomes, a game form may be strategyproof and not dictatorial. For example, it is the case of the simple majority vote: each voter casts a ballot for her most-liked alternative (among the two possible outcomes), and the alternative with most votes is declared the winner. This game form is strategyproof because it is always optimal to vote for one's most-liked alternative (unless one is indifferent between them). However, it is clearly not dictatorial. Many other game forms are strategyproof and not dictatorial: for example, assume that the alternative wins if it gets two thirds of the votes, and wins otherwise.

A game form showing that the converse does not hold

Consider the following game form. Voter 1 can vote for a candidate of her choice, or she can abstain. In the first case, the specified candidate is automatically elected. Otherwise, the other voters use a classic voting rule, for example the Borda count. This game form is clearly dictatorial, because voter 1 can impose the result. However, it is not strategyproof: the other voters face the same issue of strategic voting as in the usual Borda count. Thus, Gibbard's theorem is an implication and not an equivalence.

Notes and references

  1. The terminology for this varies. Gibbard states that 'an individual "manipulates" the voting scheme if, by misrepresenting his preferences, he secures an outcome he prefers to the "honest" outcome', while Brams and Fishburn call every ballot with an honest ordering "sincere." [2]
  1. Gibbard, Allan (1973). "Manipulation of voting schemes: A general result" (PDF). Econometrica. 41 (4): 587–601. doi:10.2307/1914083. JSTOR   1914083.
  2. Brams, Steven J.; Fishburn, Peter C. (1978). "Approval Voting". American Political Science Review. 72 (3): 831–847. doi:10.2307/1955105. ISSN   0003-0554.
  3. Gibbard, Allan (1978). "Straightforwardness of Game Forms with Lotteries as Outcomes" (PDF). Econometrica. 46 (3): 595–614. doi:10.2307/1914235. JSTOR   1914235.[ permanent dead link ]
  4. Hylland, Aanund. Strategy proofness of voting procedures with lotteries as outcomes and infinite sets of strategies, 1980.

See also

Related Research Articles

Strategic or tactical voting is voting in consideration of possible ballots cast by other voters in order to maximize one's satisfaction with the election's results. For example, in plurality or instant-runoff, a voter may recognize their favorite candidate is unlikely to win and so instead support a candidate they think is more likely to win.

In social choice theory, a Condorcet paradox is a situation where majority rule behaves in a way that is self-contradictory. In such a situation, every possible choice is rejected by the electorate in favor of another, because there is always some other outcome that a majority of voters consider to be better.

Arrow's impossibility theorem is a key result in social choice showing that no order or rank-based social welfare function can produce a rational measure of society's well-being when there are more than two options. Specifically, any such rule violates independence of irrelevant alternatives: the principle that a choice between and should not depend on a third, unrelated option . Such a social welfare function can be any way for a group to make decisions, such as a market or a voting system.

Independence of irrelevant alternatives (IIA), also known as binary independence, the independence axiom, is an axiom of decision theory and economics describing a necessary condition for rational behavior. The axiom says that a choice between and should not depend on the quality of a third, unrelated outcome .

The Gibbard–Satterthwaite theorem is a theorem in voting theory. It was first conjectured by the philosopher Michael Dummett and the mathematician Robin Farquharson in 1961 and then proved independently by the philosopher Allan Gibbard in 1973 and economist Mark Satterthwaite in 1975. It deals with deterministic ordinal electoral systems that choose a single winner, and shows that for every voting rule of this form, at least one of the following three things must hold:

  1. The rule is dictatorial, i.e. there exists a distinguished voter who can choose the winner; or
  2. The rule limits the possible outcomes to two alternatives only; or
  3. The rule is not straightforward, i.e. there is no single always-best strategy.

The term random ballot or random dictatorship refers to a randomized electoral system where the election is decided on the basis of a single randomly-selected ballot. A closely-related variant is called random serialdictatorship, which repeats the procedure and draws another ballot if multiple candidates are tied on the first ballot.

In mechanism design, a strategyproof (SP) mechanism is a game in which each player has a weakly-dominant strategy, so that no player can gain by "spying" over the other players to know what they are going to play. When the players have private information, and the strategy space of each player consists of the possible information values, a truthful mechanism is a game in which revealing the true information is a weakly-dominant strategy for each player. An SP mechanism is also called dominant-strategy-incentive-compatible (DSIC), to distinguish it from other kinds of incentive compatibility.

Social choice theory or social choice is a branch of welfare economics that analyzes mechanisms and procedures for collective decision-making. Social choice incorporates insights from economics, mathematics, and game theory to find the best ways to combine individual opinions, preferences, or beliefs into a single coherent measure of the quality of different outcomes, called a social welfare function.

Allan Fletcher Gibbard is the Richard B. Brandt Distinguished University Professor of Philosophy Emeritus at the University of Michigan, Ann Arbor. Gibbard has made major contributions to contemporary ethical theory, in particular metaethics, where he has developed a contemporary version of non-cognitivism. He has also published articles in the philosophy of language, metaphysics, and social choice theory: in social choice, he first proved the result known today as Gibbard-Satterthwaite theorem, which had been previously conjectured by Michael Dummett and Robin Farquharson.

The revelation principle is a fundamental result in mechanism design, social choice theory, and game theory which shows it is always possible to design a strategy-resistant implementation of a social decision-making mechanism. It can be seen as a kind of mirror image to Gibbard's theorem. The revelation principle says that if a social choice function can be implemented using some non-truthful mechanism, the same function can be implemented by a truthful mechanism which has the same equilibrium outcome (payoffs).

In social choice theory, a dictatorship mechanism is a rule by which, among all possible alternatives, the results of voting mirror a single predetermined person's preferences, without consideration of the other voters. Dictatorship by itself is not considered a good mechanism in practice, but it is theoretically important: by Arrow's impossibility theorem, when there are at least three alternatives, dictatorship is the only ranked voting electoral system that satisfies unrestricted domain, Pareto efficiency, and independence of irrelevant alternatives. Similarly, by Gibbard's theorem, when there are at least three alternatives, dictatorship is the only strategyproof rule.

In game theory and political science, Poisson-game models of voting are used to model the strategic behavior of voters with imperfect information about each others' behavior. Poisson games are most often used to model strategic voting in large electorates with secret and simultaneous voting.

In cooperative game theory and social choice theory, the Nakamura number measures the degree of rationality of preference aggregation rules, such as voting rules. It is an indicator of the extent to which an aggregation rule can yield well-defined choices.

<span class="mw-page-title-main">Arunava Sen</span> Indian researcher and teacher

Arunava Sen is a professor of economics at the Indian Statistical Institute. He works on Game Theory, Social Choice Theory, Mechanism Design, Voting and Auctions.

Maximal lotteries are a tournament voting rule that elects the majority-preferred candidate if one exists, and otherwise elects a candidate from the majority-preferred set by a randomized voting procedure. The method selects the probability distribution of candidates that a majority of voters would prefer to any other.

Multiwinner approval voting, also called approval-based committee (ABC) voting, is a multi-winner electoral system that uses approval ballots. Each voter may select ("approve") any number of candidates, and multiple candidates are elected. The number of elected candidates is usually fixed in advance. For example, it can be the number of seats in a country's parliament, or the required number of members in a committee.

Fractional social choice is a branch of social choice theory in which the collective decision is not a single alternative, but rather a weighted sum of two or more alternatives. For example, if society has to choose between three candidates: A B or C, then in standard social choice, exactly one of these candidates is chosen, while in fractional social choice, it is possible to choose "2/3 of A and 1/3 of B".

Fractional approval voting is an electoral system using approval ballots, in which the outcome is fractional: for each alternative j there is a fraction pj between 0 and 1, such that the sum of pj is 1. It can be seen as a generalization of approval voting: in the latter, one candidate wins and the other candidates lose. The fractions pj can be interpreted in various ways, depending on the setting. Examples are:

Budget-proposal aggregation (BPA) is a problem in social choice theory. A group has to decide on how to distribute its budget among several issues. Each group-member has a different idea about what the ideal budget-distribution should be. The problem is how to aggregate the different opinions into a single budget-distribution program.

The median voting rule is a rule for group decision-making along a one-dimensional domain. Each person votes by writing down his/her ideal value, and the rule selects a single value which is the median of all votes.