Gipps' model

Last updated

Gipps' model is a mathematical model for describing car-following behaviour by motorists in the United Kingdom.

Contents

The model is named after Peter G. Gipps who developed it in the late-1970s under S.R.C. grants at the Transport Operations Research Group at the University of Newcastle-Upon-Tyne and the Transport Studies Group at the University College London.

Gipps' model is based directly on driver behavior and expectancy for vehicles in a stream of traffic. Limitations on driver and vehicle parameters for safety purposes mimic the traits of vehicles following vehicles in the front of the traffic stream. [1] Gipps' model is differentiated by other models in that Gipps uses a timestep within the function equal to to reduce the computation required for numerical analysis.

Introduction

The method of modeling individual cars along a continuous space originates with Chandler et al. (1958), Gazis et al. (1961), [2] Lee (1966) and Bender and Fenton (1972), [3] though many other papers proceeded and have since followed. In turn, these papers have bases in several works from the mid-1950s. Of special importance are a few that have analogies to fluid dynamics and movement of gases (Lighthill and Whitman (1955) and Richards (1956) postulated the density of traffic to be a function of position; Newell (1955) makes an analogy between vehicle motion along a sparsely populated roadway and the movement of gases). First mention of simulating traffic with “high speed computers” is given by Gerlough and Mathewson (1956) and Goode (1956).

Definition

The impetus for modeling vehicles in a stream of traffic and their subsequent actions and reactions comes from the need to analyze changes to roadway parameters. Indeed, many factors (to include driver, traffic flow and roadway conditions, to name a few) affect how traffic behaves. Gipps (1981) describes models current to that time to be in the general form of:

which is defined primarily by one vehicle (noted by subscript n) following another (noted by subscript n-1); reaction time of the following vehicle ; the locations , and speeds , of the following and preceding vehicle; acceleration of the following vehicle at time ; and finally, model constants , , to adjust the model to real-life conditions. Gipps states that it is desirable for the interval between successive recalculations of acceleration, speed and location to be a fraction of the reaction time which necessitates the storage of a considerable quantity of historical data if the model is to be used in a simulation program. He also points out that the parameters , and has no obvious connection with identifiable characteristics of driver or vehicle. So, he introduces a new and improved model.

Gipps’ model should reflect the following properties:

  1. The model should reflect real conditions,
  2. Model parameters should correspond to observable driver characteristics without undue calculation, and,
  3. The model should behave as expected when the interval between successive recalculations of speed and position is the same as driver reaction time.

Gipps sets limitations on the model through safety considerations and assuming a driver would estimate his or her speed based on the vehicle in front to be able to come to a full and safe stop if needed (1981). Pipes (1953) and many others have defined following characteristics placed into models based on various driver department codes defining safe following speeds, known informally as a “2 second rule,” though is formally defined through code.

Model notation
Constraints leading to development

Gipps defines the model by a set of limitations. The following vehicle is limited by two constraints: that it will not exceed its driver's desired speed and its free acceleration should first increase with speed as engine torque increases then decrease to zero as the desired speed is reached.

The third constraint, braking, is given by

for vehicle at point , where (for vehicle n is given by

at time

For safety, the driver of vehicle n (the following vehicle) must ensure that the difference between point where vehicle n-1 stops () and the effective size of vehicle n-1 () is greater than the point where vehicle n stops (). However, Gipps finds the driver of vehicle n allows for an additional buffer and introduces a safety margin, of delay when driver n is traveling at speed . Thus the braking limitation is given by

Because a driver in traffic cannot estimate , it is replaced by an estimated value . Therefore, the above after replacement yields,

If the introduced delay, , is equal to half of the reaction time, , and the driver is willing to brake hard, a model system can continue without disruption to flow. Thus, the previous equation can be rewritten with this in mind to yield

If the final assumption is true, that is, the driver travels as fast and safely as possible, the new speed of the driver's vehicle is given by the final equation being Gipps' model:

where the first argument of the minimization regimes describes an uncongested roadway and headways are large, and the second argument describes congested conditions where headways are small and speeds are limited by followed vehicles.

These two equations used to determine the velocity of a vehicle in the next timestep represent free-flow and congested conditions, respectively. If the vehicle is in free-flow, the free-flow branch of the equation indicates that the speed of the vehicle will increase as a function of its current speed, the speed at which the driver intends to travel, and the acceleration of the vehicle. Analyzing the variables in these two equations, it becomes apparent that as the gap between two vehicles decreases (i.e. a following vehicle approaches a leading vehicle) the velocity given by the congested branch of the equation will decrease and is more likely to prevail.

Using numerical methods to generate time-space diagrams

After determining the velocity of the vehicle at the next timestep, its position at the next timestep should be calculated. There are several numerical (Runge–Kutta) methods that can be used to do this, depending on the accuracy to which the user would prefer. Using higher order methods to calculate a vehicle's position in the next timestep will yield a result with higher accuracy (if each method uses the same timestep). Numerical methods can also be used to find positions of vehicles in other car following models, such as the intelligent driver model.

Eulers Method (first order, and perhaps the simplest of the numerical methods) can be used to obtain accurate results, but the timestep would have to be very small, resulting in a greater amount of computation. Also, as a vehicle comes to a stop and the following vehicle approaches it, the term underneath the square root in the congested part of the velocity equation could potentially fall below zero if Euler's method is being used and the timestep is too large. The position of the vehicle in the next timestep is given by the equation:

x(t+τ)= x(t) +v(t)τ

Higher order methods not only use the velocity in the current timestep, but velocities from the previous timestep to generate a more accurate result. For instance, Heun's Method (second order) averages the velocity from the current and previous timestep to determine the next position of a vehicle:

Butchers Method (fifth order) uses an even more elegant solution to solve the same problem:

x(t+τ) = x(t) + (1/90)(7k1 + 32k3 + 12k4+ 32k5 + 7k6

k1 = v(t-τ)

k3 = v(t-τ) + (1/4)(v(t) - v(t-τ))

k4 = v(t-τ) + (1/2)(v(t) - v(t-τ))

k5 = v(t-τ) + (3/4)(v(t) - v(t-τ))

k6 = v(t)

Using higher-order methods reduces the probability that the term under the square root in the congested branch of the velocity equation will fall below zero.

For the purpose of simulation, it is important to make sure the velocity and position of every vehicle has been calculated for a timestep before determining the moving along to the next timestep.

In 2000, Wilson used Gipp's model for simulating driver behavior on a ring road. In this case, every vehicle in the system is following another vehicle – the leader follows the last vehicle. The results of the experiment showed that the cars followed a free-flow time-space trajectory when the density on the ring road was low. However, as the number of vehicles on the road increases (density increases), kinematic waves begin to form as the congested part of the Gipps’ Model velocity equation prevails.

See also

Related Research Articles

In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force F proportional to the displacement x:

Discretization Process of transferring continuous functions into discrete counterparts

In applied mathematics, discretization is the process of transferring continuous functions, models, variables, and equations into discrete counterparts. This process is usually carried out as a first step toward making them suitable for numerical evaluation and implementation on digital computers. Dichotomization is the special case of discretization in which the number of discrete classes is 2, which can approximate a continuous variable as a binary variable.

A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point linearly correlated to the local strain rate — the rate of change of its deformation over time. Stresses are proportional to the rate of change of the fluid's velocity vector.

Drude model Model of electrical conduction

The Drude model of electrical conduction was proposed in 1900 by Paul Drude to explain the transport properties of electrons in materials. Basically, Ohm's law was well established and stated that the current J and voltage V driving the current are related to the resistance R of the material. The inverse of the resistance is known as the conductance. When we consider a metal of unit length and unit cross sectional area, the conductance is known as the conductivity, which is the inverse of resistivity. The Drude model attempts to explain the resistivity of a conductor in terms of the scattering of electrons by the relatively immobile ions in the metal that act like obstructions to the flow of electrons.

Large eddy simulation

Large eddy simulation (LES) is a mathematical model for turbulence used in computational fluid dynamics. It was initially proposed in 1963 by Joseph Smagorinsky to simulate atmospheric air currents, and first explored by Deardorff (1970). LES is currently applied in a wide variety of engineering applications, including combustion, acoustics, and simulations of the atmospheric boundary layer.

In mathematics, a symplectic integrator (SI) is a numerical integration scheme for Hamiltonian systems. Symplectic integrators form the subclass of geometric integrators which, by definition, are canonical transformations. They are widely used in nonlinear dynamics, molecular dynamics, discrete element methods, accelerator physics, plasma physics, quantum physics, and celestial mechanics.

In mathematics and transportation engineering, traffic flow is the study of interactions between travellers and infrastructure, with the aim of understanding and developing an optimal transport network with efficient movement of traffic and minimal traffic congestion problems.

Lattice Boltzmann methods Class of computational fluid dynamics methods

Lattice Boltzmann methods (LBM), originated from the lattice gas automata (LGA) method, is a class of computational fluid dynamics (CFD) methods for fluid simulation. Instead of solving the Navier–Stokes equations directly, a fluid density on a lattice is simulated with streaming and collision (relaxation) processes. The method is versatile as the model fluid can straightforwardly be made to mimic common fluid behaviour like vapour/liquid coexistence, and so fluid systems such as liquid droplets can be simulated. Also, fluids in complex environments such as porous media can be straightforwardly simulated, whereas with complex boundaries other CFD methods can be hard to work with.

Virial stress is a measure of mechanical stress on an atomic scale for homogeneous systems. The expression of the (local) virial stress can be derived as the functional derivative of the free energy of a molecular system with respect to the deformation tensor.

In traffic flow modeling, the intelligent driver model (IDM) is a time-continuous car-following model for the simulation of freeway and urban traffic. It was developed by Treiber, Hennecke and Helbing in 2000 to improve upon results provided with other "intelligent" driver models such as Gipps' model, which loses realistic properties in the deterministic limit.

Microscopic traffic flow models are a class of scientific models of vehicular traffic dynamics.

Fundamental diagram of traffic flow Type of diagram

The fundamental diagram of traffic flow is a diagram that gives a relation between road traffic flux (vehicles/hour) and the traffic density (vehicles/km). A macroscopic traffic model involving traffic flux, traffic density and velocity forms the basis of the fundamental diagram. It can be used to predict the capability of a road system, or its behaviour when applying inflow regulation or speed limits.

The Herschel–Bulkley fluid is a generalized model of a non-Newtonian fluid, in which the strain experienced by the fluid is related to the stress in a complicated, non-linear way. Three parameters characterize this relationship: the consistency k, the flow index n, and the yield shear stress . The consistency is a simple constant of proportionality, while the flow index measures the degree to which the fluid is shear-thinning or shear-thickening. Ordinary paint is one example of a shear-thinning fluid, while oobleck provides one realization of a shear-thickening fluid. Finally, the yield stress quantifies the amount of stress that the fluid may experience before it yields and begins to flow.

Shear velocity, also called friction velocity, is a form by which a shear stress may be re-written in units of velocity. It is useful as a method in fluid mechanics to compare true velocities, such as the velocity of a flow in a stream, to a velocity that relates shear between layers of flow.

In traffic flow theory, Newell’s car-following model is a method used to determine how vehicles follow one another on a roadway. The main idea of this model is that a vehicle will maintain a minimum space and time gap between it and the vehicle that precedes it. Thus, under congested conditions, if the leading car changes its speed, the following vehicle will also change speed at a point in time-space along the traffic wave speed, -w.

The Three-detector problem is a problem in traffic flow theory. Given is a homogeneous freeway and the vehicle counts at two detector stations. We seek the vehicle counts at some intermediate location. The method can be applied to incident detection and diagnosis by comparing the observed and predicted data, so a realistic solution to this problem is important. Newell G.F. proposed a simple method to solve this problem. In Newell's method, one gets the cumulative count curve (N-curve) of any intermediate location just by shifting the N-curves of the upstream and downstream detectors. Newell's method was developed before the variational theory of traffic flow was proposed to deal systematically with vehicle counts. This article shows how Newell's method fits in the context of variational theory.

Truck lane restriction

Truck lane restriction within transportation traffic engineering, is a factor impacting freeway truck lanes and traffic congestion. In traffic flow theory, intuitively, slow vehicles will cause queues behind them, but how it relates to the kinematic wave theory was not revealed until Newell. Leclercq et al did a complete review of Newell's theory. In addition to the simulation models developed by Laval and Daganzo on the basis of numerical solution methods for Newell's theory to capture the impacts of slow vehicle, Laval also mathematically derived the analytical capacity formulas for bottlenecks caused by single-type of trucks for multi-lane freeway segments.

Traffic congestion reconstruction with Kerners three-phase theory

Vehicular traffic can be either free or congested. Traffic occurs in time and space, i.e., it is a spatiotemporal process. However, usually traffic can be measured only at some road locations. For efficient traffic control and other intelligent transportation systems, the reconstruction of traffic congestion is necessary at all other road locations at which traffic measurements are not available. Traffic congestion can be reconstructed in space and time based on Boris Kerner’s three-phase traffic theory with the use of the ASDA and FOTO models introduced by Kerner. Kerner's three-phase traffic theory and, respectively, the ASDA/FOTO models are based on some common spatiotemporal features of traffic congestion observed in measured traffic data.

Moving load Load that changes in time

In structural dynamics, a moving load changes the point at which the load is applied over time. Examples include a vehicle that travels across a bridge and a train moving along a track.

The Bueno-Orovio–Cherry–Fenton model, also simply called Bueno-Orovio model, is a minimal ionic model for human ventricular cells. It belongs to the category of phenomenological models, because of its characteristic of describing the electrophysiological behaviour of cardiac muscle cells without taking into account in a detailed way the underlying physiology and the specific mechanisms occurring inside the cells.

References

  1. Spyropoulou, Ioanna (2007). "Simulation Using Gipps' Car-Following Model—An In-Depth Analysis". Transportmetrica. 3 (3): 231–245. doi:10.1080/18128600708685675. S2CID   111305074.
  2. Wilson, R. E. (2001). "An analysis of Gipps' car-following model of highway traffic". IMA Journal of Applied Mathematics. 66 (5): 509–537. Bibcode:2001JApMa..66..509W. doi:10.1093/imamat/66.5.509.
  3. 1 2 Gipps, P. G. 1981 A behavioural car-following model for computer simulation. Transportation Research Part B, 15, 105-111

Further reading