Traffic simulation or the simulation of transportation systems is the mathematical modeling of transportation systems (e.g., freeway junctions, arterial routes, roundabouts, downtown grid systems, etc.) through the application of computer software to better help plan, design, and operate transportation systems. [1] Simulation of transportation systems started in the 1950s, [2] and is an important area of discipline in traffic engineering and transportation planning today. Various national and local transportation agencies, academic institutions and consulting firms use simulation to aid in their management of transportation networks.
Simulation in transportation is important because it can study models too complicated for analytical or numerical treatment, can be used for experimental studies, can study detailed relations that might be lost in analytical or numerical treatment and can produce attractive visual demonstrations of present and future scenarios.
To understand simulation, it is important to understand the concept of system state, which is a set of variables that contains enough information to describe the evolution of the system over time. [3] System state can be either discrete or continuous. Traffic simulation models are classified according to discrete and continuous time, state, and space. [4]
Simulation methods in transportation can employ a selection of theories, including probability and statistics, differential equations and numerical methods.
One of the earliest discrete event simulation models is the Monte Carlo simulation, where a series of random numbers are used to synthesise traffic conditions. [5]
This was followed by the cellular automata model that generates randomness from deterministic rules.
More recent methods use either discrete event simulation or continuous-time simulation. Discrete event simulation models are both stochastic (with random components) and dynamic (time is a variable). Single server queues for instance can be modeled very well using discrete event simulation, as servers are usually at a single location and so are discrete (e.g. traffic lights). Continuous time simulation, on the other hand, can solve the shortcoming of discrete event simulation where the model is required to have input, state and output trajectories within a time interval. The method requires the use of differential equations, specifically numerical integration methods. [6] These equations can range from simple methods, such as Euler's method, to higher order Taylor's series methods, such as Heun's method and Runge-Kutta. [7]
A class of microscopic continuous-time models, known as car-following models, are also based on differential equations. Significant models include the Pipes, intelligent driver model and Gipps' model. They model the behavior of each vehicle ("microscopic") to see its implications on the whole traffic system ("macroscopic"). Employing a numerical method with a car-following model (such as Gipps' with Heun's) can generate important information for traffic conditions, such as system delays and identification of bottlenecks.
The methods noted above are generally used to model the behavior of an existing system, and are often focused around specific areas of interest under a range of conditions (such as a change in layout, lane closures, and different levels of traffic flow). Transport planning and forecasting can be used to develop a wider understanding of traffic demands over a broad geographic area, and predicting future traffic levels at different links (sections) in the network, incorporating different growth scenarios, with feedback loops to incorporate the effect of congestion on the distribution of trips.
Traffic simulation models are useful from a microscopic, macroscopic and sometimes mesoscopic perspective. Simulation can be applied to both transportation planning and to transportation design and operations. In transportation planning the simulation models evaluate the impacts of regional urban development patterns on the performance of the transportation infrastructure. Regional planning organizations use these models to evaluate what-if scenarios in the region, such as air quality to help develop land use policies that lead to more sustainable travel. On the other hand, modeling of transportation system operations and design focus on a smaller scale, such as a highway corridor and pinch-points. Lane types, signal timing and other traffic related questions are investigated to improve local system effectiveness and efficiency. [8] While certain simulation models are specialized to model either operations or system planning, certain models have the capability to model both to some degree.
Whether it is for planning or for systems operations, simulations can be used for a variety of transportation modes.
Ground transportation for both passenger and goods movement is perhaps the area where simulation is most widely used. Simulation can be carried out at a corridor level, or at a more complex roadway grid network level to analyze planning, design and operations such as delay, pollution, and congestion. Ground transportation models can include all modes of roadway travel, including vehicles, trucks, buses, bicycles and pedestrians. In traditional road traffic models, aggregate representation of traffic is typically used where all vehicles of a particular group obey the same rules of behavior; in micro-simulation, driver behavior and network performance are included so that complete traffic problems (e.g. Intelligent transportation system, shockwaves) can be examined. [9]
Rail is an important mode of travel for both freight and passengers. Modeling railways for freight movement is important to determine the operational efficiency and rationalize planning decisions. [10] Freight simulation can include aspects such as dedicated truck lanes, commodity flow, corridor and system capacity, traffic assignment/network flow, and freight plans that involve travel demand forecasting. [11]
Maritime and air transportation presents two areas that are important for the economy. Maritime simulation primarily includes container terminal modeling, that deals with the logistics of container handling to improve system efficiency. Air transportation simulation primarily involves modeling of the airport terminal operations (baggage handling, security checkpoint), and runway operations.
In addition to simulating individual modes, it is often more important to simulate a multi-modal network, since in reality modes are integrated and represent more complexities that each individual mode can overlook. Inter-modal network simulation can also better understand the impact of a certain network from a comprehensive perspective to more accurately represent its impact in order to realize important policy implications. An example of an inter-modal simulator is Commuter developed by Azalient which introduces both dynamic route and mode choice by agents during simulation - this type of modeling is referred to as nanosimulation as it considers demand and travel at a finer level of detail than traditional microsimulation.
Simulation in transportation can also be integrated with urban environment simulation, where a large urban area is simulated which includes roadway networks, to better understand land use and other planning implications of the traffic network on the urban environment.
Simulation software [12] is getting better in a variety of different ways. With new advancements in mathematics, engineering and computing, simulation software programs are increasingly becoming faster, more powerful, more detail oriented and more realistic. [13]
Transportation models generally can be classified into microscopic, mesoscopic, macroscopic, and metascopic models. Microscopic models study individual elements of transportation systems, such as individual vehicle dynamics and individual traveler behavior. Mesoscopic models analyze transportation elements in small groups, within which elements are considered homogeneous. A typical example is vehicle platoon dynamics and household-level travel behavior. Macroscopic models deal with aggregated characteristics of transportation elements, such as aggregated traffic flow dynamics and zonal-level travel demand analysis.
Microsimulation models track individual vehicle movements on a second or subsecond basis. Microsimulation relies on random numbers to generate vehicles, select routing decisions, and determine behavior. Because of this variation, it is necessary to run the model several times with different random number seeds to obtain the desired accuracy. There will be a 'warm-up' period before the system reaches a steady state, and this period should be excluded from the results.
Microsimulation models usually produce two types of results: animated displays, and numerical output in text files. It is important to understand how the software has accumulated and summarized the numerical results to prevent incorrect interpretation. Animation can allow the analyst to quickly assess the performance, however it is limited to qualitative comparisons. The main indication of a problem that can be seen in an animation is the forming of persistent queues.
'Measures of Effectiveness' (MOEs) may be calculated or defined in a manner which is unique to each simulation program. MOEs are the system performance statistics that categorize the degree to which a particular alternative meets the project objectives. The following MOEs are most common when analyzing simulation models:
Other commonly reported metrics from traffic simulation tools include: .
The output of a microsimulation model is different from that of the US Federal Highway Capacity Manual (HCM). For example, most HCM procedures assume that the operation of one intersection will not be affected by the conditions of an adjacent roadway (with the exception of HCS 2000 Freeways). 'Rubbernecking' and long queues from one location interfering with another location would contradict this assumption.
The HCM 2010 provides revised guidance on what types of output from traffic simulation software are most suitable for analysis in, and comparison to, the HCM for example vehicle trajectories and raw loop detector output.
In the HCM delay is used to estimate the level of service (LOS) for intersections. However, there are distinct differences between the way microsimulation programs and the HCM define delay. The HCM bases its delay on adjusted flow using mean control delay for the highest 15 minute period within the hour. The distinction between total delay and control delay is important. Control delay is when a signal control causes a group to slow down or stop. It's important to look at the software's documentation to understand how it calculates delay. In order to use microsimulation outputs to find LOS, the delay must be accumulated over 15 minute intervals and averaged over several runs with different random seeds. Because the HCM uses adjusted flow, another way to compare delay is divide the simulation input's 15 minute peak volume by the peak hour factor (PHF) to increase the simulation's volume.
HCM 2000 defines a queue as a line of vehicles, bicycles, or persons waiting to be served by the system in which the flow rate from the front of the queue determines the average speed within the queue. Slowly moving vehicles or people joining the rear of the queue are usually considered part of the queue. These definitions are somewhat relative and can be ambiguous. In most microsimulation programs the queue length cannot exceed the storage capacity for that turn-bay or lane. Overflows into the adjacent link or off the network are usually not accounted for, even though this may affect the results. (If this is the case, a work-around can be to temporarily ignore those effects and extend the network or storage area for the link to include the maximum queue length.) [14]
Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be determined by comparing their results to the real-world outcomes they aim to predict. Computer simulations have become a useful tool for the mathematical modeling of many natural systems in physics, astrophysics, climatology, chemistry, biology and manufacturing, as well as human systems in economics, psychology, social science, health care and engineering. Simulation of a system is represented as the running of the system's model. It can be used to explore and gain new insights into new technology and to estimate the performance of systems too complex for analytical solutions.
Teletraffic engineering, telecommunications traffic engineering, or just traffic engineering when in context, is the application of transportation traffic engineering theory to telecommunications. Teletraffic engineers use their knowledge of statistics including queuing theory, the nature of traffic, their practical models, their measurements and simulations to make predictions and to plan telecommunication networks such as a telephone network or the Internet. These tools and knowledge help provide reliable service at lower cost.
In transportation engineering, traffic flow is the study of interactions between travellers and infrastructure, with the aim of understanding and developing an optimal transport network with efficient movement of traffic and minimal traffic congestion problems.
The GEH Statistic is a formula used in traffic engineering, traffic forecasting, and traffic modelling to compare two sets of traffic volumes. The GEH formula gets its name from Geoffrey E. Havers, who invented it in the 1970s while working as a transport planner in London, England. Although its mathematical form is similar to a chi-squared test, is not a true statistical test. Rather, it is an empirical formula that has proven useful for a variety of traffic analysis purposes.
Microsimulation is the use of computerized analytical tools to perform analysis of activities such as highway traffic flowing through an intersection, financial transactions, or pathogens spreading disease through a population on the granularity level of individuals. Synonyms include microanalytic simulation and microscopic simulation. Microsimulation, with its emphasis on stochastic or rule-based structures, should not be confused with the similar complementary technique of multi-agent simulation, which focuses more on the behaviour of individuals.
Computational Engineering is an emerging discipline that deals with the development and application of computational models for engineering, known as Computational Engineering Models or CEM. Computational engineering uses computers to solve engineering design problems important to a variety of industries. At this time, various different approaches are summarized under the term Computational Engineering, including using computational geometry and virtual design for engineering tasks, often coupled with a simulation-driven approach In Computational Engineering, algorithms solve mathematical and logical models that describe engineering challenges, sometimes coupled with some aspect of AI, specifically Reinforcement Learning.
Microscopic traffic flow models are a class of scientific models of vehicular traffic dynamics.
TRANSIMS is an integrated set of tools developed to conduct regional transportation system analyses. With the goal of establishing TRANSIMS as an ongoing public resource available to the transportation community, TRANSIMS is made available under the NASA Open Source Agreement Version 1.3
Simulation software is based on the process of modeling a real phenomenon with a set of mathematical formulas. It is, essentially, a program that allows the user to observe an operation through simulation without actually performing that operation. Simulation software is used widely to design equipment so that the final product will be as close to design specs as possible without expensive in process modification. Simulation software with real-time response is often used in gaming, but it also has important industrial applications. When the penalty for improper operation is costly, such as airplane pilots, nuclear power plant operators, or chemical plant operators, a mock up of the actual control panel is connected to a real-time simulation of the physical response, giving valuable training experience without fear of a disastrous outcome.
TransModeler is the name of a based traffic simulation platform for doing wide-area traffic planning, traffic management, and emergency evacuation studies that is developed by Caliper Corporation. It can animate the behavior of multi-modal traffic systems to show the flow of vehicles, the operation of traffic signals, and the overall performance of the transportation network.
PTV Vissim is a microscopic multi-modal traffic flow simulation software package developed by PTV Planung Transport Verkehr AG in Karlsruhe, Germany. It was first developed in 1992. The name is derived from "Verkehr In Städten - SIMulationsmodell".
Aimsun Live is a traffic forecasting solution based on simulation, developed and marketed by Aimsun.
Paramics is traffic microsimulation software, originally developed by Quadstone Ltd. There is a related pedestrian microsimulation product called the Urban Analytics Framework.
A traffic conflict is "an observable event which would end in an accident unless one of the involved parties slows down, changes lanes, or accelerates to avoid collision". Traffic conflicts are defined by their time-to-collision, post-encroachment-time, and angle of conflict parameters as well as the vehicles' position in time and space.
TSIS-CORSIM is a microscopic traffic simulation software package for signal systems, highway systems, freeway systems, or combined signal, highway and freeway systems. CORSIM consists of an integrated set of two microscopic simulation models that represent the entire traffic environment. NETSIM represents traffic on urban streets. FRESIM represents traffic on highways and freeways. Microscopic simulation models the movements of individual vehicles, which include the influences of geometric conditions, control conditions, and driver behavior. TSIS is an integrated development environment that enables users to conduct traffic operations analysis. Built using a component architecture, TSIS allows the user to customize the set of included tools, define and manage traffic analysis projects, define traffic networks and create inputs for traffic simulation analysis, execute traffic simulation models, and interpret the results of those models.
PTV Planung Transport Verkehr GmbH is a German company specializing in software and consulting services for traffic and transportation and mobility. Their transport planning software, Vision Traffic Suite comprise the PTV Group's product portfolio. According to the manufacturer; over 2,500 customers in more than 120 countries use the Vision Traffic Suite in the fields of transport modelling and traffic flow calculation. PTV ranks among the top 1,000 global market leaders in Germany according to Germany's Manager Magazine.
Sidra Intersection is a software package used for intersection (junction), interchange and network capacity, level of service and performance analysis, and signalised intersection, interchange and network timing calculations by traffic design, operations and planning professionals.
Junctions is a software package by Transport Research Laboratory. It incorporates the previously separate programs ARCADY, PICADY and OSCADY. The latest version, Junctions 10, was launched on 3 February 2021.
Michel Bierlaire is a Belgian-Swiss applied mathematician specialized in transportation modeling and optimization. He is a professor at EPFL and the head of the Transport and Mobility Laboratory.