A glossmeter (also gloss meter) is an instrument which is used to measure specular reflection gloss of a surface. Gloss is determined by projecting a beam of light at a fixed intensity and angle onto a surface and measuring the amount of reflected light at an equal but opposite angle.
There are a number of different geometries available for gloss measurement, each being dependent on the type of surface to be measured. For non-metals such as coatings and plastics the amount of reflected light increases with a greater angle of illumination, as some of the light penetrates the surface material and is absorbed into it or diffusely scattered from it depending on its colour. Metals have a much higher reflection and are therefore less angularly dependent.
Many international technical standards are available that define the method of use and specifications for different types of glossmeter used on various types of materials including paint, ceramics, paper, metals and plastics. Many industries use glossmeters in their quality control to measure the gloss of products to ensure consistency in their manufacturing processes. The automotive industry is a major user of the glossmeter, with applications extending from the factory floor to the repair shop.
Of the many internationally recorded publications relating to gloss measurement, the earliest recorded studies (perceived and instrumental) are attributed to Leonard R. Ingersoll, [1] who in 1914 developed a means to measure the glare of paper. The Ingersoll "Glarimeter", the earliest known instrument developed for gloss measurement, was based on the principle that light is polarised in specular reflection. The instrument employed incident and viewing angles of 57.5° and used a contrast method to subtract the specular component from the total reflection using a polarising element. Ingersoll successfully applied for and patented this instrument a few years later in 1917.
In 1922 L. A. Jones, [2] during his study of gloss of photographic papers using goniophotometry, developed a glossmeter based on his research, which provided closer correlation to gloss ratings assigned by visual evaluation. Jones's glossmeter used a geometric configuration of 45°/0°/45° whereby the surface was illuminated at 45° and two incident reflective angles measured and compared at 0° (diffuse reflectance) and 45° (diffuse plus specular reflectance). Jones was the first to emphasize the importance of using goniophotometric measurements in studies of gloss.
Early work in 1925 by A. H. Pfund [3] led to the development of a variable angle "glossimeter" to measure specular gloss which was later patented in 1932. Pfund's instrument, allowed the angle of measurement to be varied, but maintained the angle of view to the angle of illumination. Reflected light was measured using a pyrometer lamp as a photometer. The 'glossimeter' was the first to use black glass standards as a basis for reflectance setting. As the angle was variable this instrument could also be used for the measurement of sheen or specular gloss at near grazing angles.
During this time, growing interest in this field resulted in a number of similar studies by other individuals each having their own method for gloss measurement, most of which published as technical articles in scientific journals of that time. A few of these also resulted in patents.
In 1937 Hunter, as part of a research project for the U.S. National Bureau of Standards, produced a paper on the methods of determining gloss. In this paper he discussed instruments that were available at the time (including the ones mentioned previously) in relation to the classification of six different types of gloss. In this paper Hunter also detailed the general requirements for a standardised glossmeter. Standardisation in gloss measurement was led by Hunter and ASTM (American Society for Testing and Materials) who produced ASTM D523 Standard test method for specular gloss in 1939. This incorporated a method for measuring gloss at a specular angle of 60°. Later editions of the Standard (1951) included methods for measuring at 20° (high gloss) and 85° (matt, or low, gloss). ASTM has a number of other gloss-related standards designed for application in specific industries.
In the paint industry, measurements of specular gloss are made according to International Standard ISO 2813. This standard is equivalent to national standards ASTM D523 (United States), BS 3900, Part 5 (United Kingdom); DIN 67530 (Germany), NFT 30-064 (France), AS 1580 (Australia), JIS Z8741 (Japan).
A typical glossmeter consists of a fixed mechanical assembly comprising a standardised light source that projects a parallel beam of light onto the test surface to be measured and a filtered detector located to receive the rays reflected from the surface. The ASTM Method states that the illumination should be defined such that the source-detector combination is spectrally corrected to give the CIE luminous efficiency, V(?), with CIE illuminant SC. [4]
A number of instruments are commercially available that conform to the above standards in terms of their measurement geometry. The instruments are calibrated using reference standards that are usually made from highly polished, plane, black glass with a refractive index of 1.567 for the Sodium D line, and these are assigned a gloss value of 100 for each geometry. [5]
The glossmeter provides a quantifiable way of measuring gloss intensity ensuring consistency of measurement by defining the precise illumination and viewing conditions. [6] The configuration of both illumination source and observation reception angles allows measurement over a small range of the overall reflection angle. The measurement results of a glossmeter are related to the amount of reflected light from a black glass standard with a defined refractive index. The ratio of reflected to incident light for the specimen, compared to the ratio for the gloss standard, is recorded as gloss units (GU).
Measurement angle refers to the angle between the incident light and the perpendicular. Three measurement angles (20°, 60°, and 85°) are specified to cover the majority of industrial coatings applications. The angle is selected based on the anticipated gloss range, as shown in the following table.
Gloss Range | 60° Value | Notes |
High Gloss | >70 GU | If measurement exceeds 70 GU, change test setup to 20° |
Medium Gloss | 10 – 70 GU | |
Low Gloss | <10 GU | If measurement is less than 10 GU, change test setup to 85° |
For example, if the measurement made at 60° is greater than 70 GU, the measurement angle should be changed to 20° to optimise measurement accuracy. Three types of instruments are available on the market: 60° single angle instruments, a combination of 20° and 60° and one type that combines 20°, 60° and 85°.
Two additional angles are used for other materials. An angle of 45° is specified for the measurement of ceramics, films, textiles and anodised aluminium, whilst 75° is specified for paper and printed materials.
The measurement scale, gloss units (GU), of a glossmeter is a scaling based on a highly polished reference black glass standard with a defined refractive index having a specular reflectance of 100GU at the specified angle.
This standard is used to establish an upper point calibration of 100 with the lower end point established at 0 on a perfectly matte surface. This scaling is suitable for most non-metallic coatings and materials (paints and plastics) as they generally fall within this range. For other materials, highly reflective in appearance (mirrors, plated / raw metal components), higher values can be achieved reaching 2000 Gloss Units. For transparent materials, these values can also be increased due to multiple reflections within the material. For these applications it is common to use percent reflection of incident light rather than gloss units
Standard | 20° | 60° | 85° | 45° | 75° |
High Gloss | Medium Gloss | Low Gloss | Medium Gloss | Low Gloss | |
Coatings, plastics and related materials | Ceramics, Plastic film | Paper | |||
ASTM C346 | X | ||||
ASTM D523 | X | X | X | ||
ASTM C584 | X | ||||
ASTM D2457 | X | X | X | ||
BS3900 D5 | X | X | X | ||
DIN 67530 | X | X | X | ||
DIN EN ISO 2813 | X | X | X | ||
EN ISO 7668 | X | X | X | X | |
JI Z 8741 | X | X | X | X | X |
TAPPI T480 | X | ||||
Each glossmeter is set up by the manufacturer to be linear throughout its measuring range by calibrating to a set of master calibration tiles traceable to BAM Federal Institute for Materials Research or similar organisations.
In order to maintain the performance and linearity of the glossmeter it is recommended to use a checking standard tile. This standard tile has assigned gloss unit values for each angle of measurement which are also traceable to National Standards such as BAM Federal Institute for Materials Research. The instrument is calibrated to this checking standard which is commonly referred to as a 'calibration tile' or 'calibration standard'. The interval of checking this calibration is dependent on the frequency of use and the operating conditions of the glossmeter.
It has been seen that standard calibration tiles kept in optimum conditions can become contaminated and change by a few gloss units over a period of years. Standard tiles which are used in working conditions will require regular calibration or checking by the instrument manufacturer or glossmeter calibration specialist.
A period of one year between standard tile recalibration should be regarded as a minimum period. If a calibration standard becomes permanently scratched or damaged at any time it will require immediate recalibration or replacement as the glossmeter may give incorrect readings.
International standards state that it is the tile that is the calibrated and a traceable artefact not the glossmeter. However it is often recommended by manufacturers that the instrument also be checked to verify its operation on a frequency dependent on the operating conditions.
The glossmeter is a useful instrument for measuring the gloss of a surface. However, it is not sensitive to other common effects which reduce appearance quality such as haze and orange peel.
Haze is caused by microscopic surface structure which slightly changes the direction of a reflected light causing a bloom adjacent to the specular (gloss) angle. The surface has less reflective contrast and a shallow milky effect.
Orange peel is caused by an uneven surface formation of large surface structures distorting the reflected light.
Two high gloss surfaces can measure identically with a standard glossmeter but can be visually very different. Instruments are available to quantify orange peel by measuring distinctness of image (DOI) or reflected image quality (RIQ) and haze.
The glossmeter is adopted by many industries, from paper mills to automotive and is used at each stage of the manufacturing process from goods receipt through to final inspection. Examples include: paints; powder and wood coatings; additives; inks; plastics; automative, glass, and yacht manufacturing; aerospace, polished stone and metal; consumer electronics; and anodised metals.
A light meter is a device used to measure the amount of light. In photography, an exposure meter is a light meter coupled to either a digital or analog calculator which displays the correct shutter speed and f-number for optimum exposure, given a certain lighting situation and film speed. Similarly, exposure meters are also used in the fields of cinematography and scenic design, in order to determine the optimum light level for a scene.
Reflection is the change in direction of a wavefront at an interface between two different media so that the wavefront returns into the medium from which it originated. Common examples include the reflection of light, sound and water waves. The law of reflection says that for specular reflection the angle at which the wave is incident on the surface equals the angle at which it is reflected.
Diffuse reflection is the reflection of light or other waves or particles from a surface such that a ray incident on the surface is scattered at many angles rather than at just one angle as in the case of specular reflection. An ideal diffuse reflecting surface is said to exhibit Lambertian reflection, meaning that there is equal luminance when viewed from all directions lying in the half-space adjacent to the surface.
Specular reflection, or regular reflection, is the mirror-like reflection of waves, such as light, from a surface.
A pyranometer is a type of actinometer used for measuring solar irradiance on a planar surface and it is designed to measure the solar radiation flux density (W/m2) from the hemisphere above within a wavelength range 0.3 μm to 3 μm.
The bidirectional reflectance distribution function (BRDF), symbol , is a function of four real variables that defines how light from a source is reflected off an opaque surface. It is employed in the optics of real-world light, in computer graphics algorithms, and in computer vision algorithms. The function takes an incoming light direction, , and outgoing direction, , and returns the ratio of reflected radiance exiting along to the irradiance incident on the surface from direction . Each direction is itself parameterized by azimuth angle and zenith angle , therefore the BRDF as a whole is a function of 4 variables. The BRDF has units sr−1, with steradians (sr) being a unit of solid angle.
Metallography is the study of the physical structure and components of metals, by using microscopy.
Gloss is an optical property which indicates how well a surface reflects light in a specular (mirror-like) direction. It is one of the important parameters that are used to describe the visual appearance of an object. Other categories of visual appearance related to the perception of regular or diffuse reflection and transmission of light have been organized under the concept of cesia in an order system with three variables, including gloss among the involved aspects. The factors that affect gloss are the refractive index of the material, the angle of incident light and the surface topography.
Moisture analysis covers a variety of methods for measuring the moisture content in solids, liquids, or gases. For example, moisture is a common specification in commercial food production. There are many applications where trace moisture measurements are necessary for manufacturing and process quality assurance. Trace moisture in solids must be known in processes involving plastics, pharmaceuticals and heat treatment. Fields that require moisture measurement in gasses or liquids include hydrocarbon processing, pure semiconductor gases, bulk pure or mixed gases, dielectric gases such as those in transformers and power plants, and natural gas pipeline transport. Moisture content measurements can be reported in multiple units, such as: parts per million, pounds of water per million standard cubic feet of gas, mass of water vapor per unit volume or mass of water vapor per unit mass of dry gas.
An integrating sphere is an optical component consisting of a hollow spherical cavity with its interior covered with a diffuse white reflective coating, with small holes for entrance and exit ports. Its relevant property is a uniform scattering or diffusing effect. Light rays incident on any point on the inner surface are, by multiple scattering reflections, distributed equally to all other points. The effects of the original direction of light are minimized. An integrating sphere may be thought of as a diffuser which preserves power but destroys spatial information. It is typically used with some light source and a detector for optical power measurement. A similar device is the focusing or Coblentz sphere, which differs in that it has a mirror-like (specular) inner surface rather than a diffuse inner surface.
Sheen is a measure of the reflected light (glossiness) from a paint finish. Glossy and flat are typical extreme levels of glossiness of a finish. Gloss paint is shiny and reflects most light in the specular (mirror-like) direction, while on flat paints most of the light diffuses in a range of angles. The gloss level of paint can also affect its apparent colour.
A transparency meter, also called a clarity meter, is an instrument used to measure the transparency of an object. Transparency refers to the optical distinctness with which an object can be seen when viewed through plastic film/sheet, glass, etc. In the manufacture of sheeting/film, or glass the quantitative assessment of transparency is just as important as that of haze.
Mottle is a pattern of irregular marks, spots, streaks, blotches or patches of different shades or colours. It is commonly used to describe the surface of plants or the skin of animals. In plants, mottling usually consists of yellowish spots on plants, and is usually a sign of disease or malnutrition. Many plant viruses cause mottling, some examples being:
A structured-light 3D scanner is a device that measures the three-dimensional shape of an object by projecting light patterns—such as grids or stripes—onto it and capturing their deformation with cameras. This technique allows for precise surface reconstruction by analyzing the displacement of the projected patterns, which are processed into detailed 3D models using specialized algorithms.
Distinctness of image (DOI) is a quantification of the deviation of the direction of light propagation from the regular direction by scattering during transmission or reflection. DOI is sensitive to even subtle scattering effects; the more light is being scattered out of the regular direction the more the initially sharp image is blurred. In polluted air it is the sum of all particles of various dimensions that induces haze.
The visual appearance of objects is given by the way in which they reflect and transmit light. The color of objects is determined by the parts of the spectrum of light that are reflected or transmitted without being absorbed. Additional appearance attributes are based on the directional distribution of reflected (BRDF) or transmitted light (BTDF) described by attributes like glossy, shiny versus dull, matte, clear, turbid, distinct, etc. Since "visual appearance" is a general concept that includes also various other visual phenomena, such as color, visual texture, visual perception of shape, size, etc., the specific aspects related to how humans see different spatial distributions of light have been given the name cesia. It marks a difference with color, which could be defined as the sensation arising from different spectral compositions or distributions of light.
In the field of industrial ultrasonic testing, ultrasonic thickness measurement (UTM) is a method of performing non-destructive measurement (gauging) of the local thickness of a solid element based on the time taken by the ultrasound wave to return to the surface. This type of measurement is typically performed with an ultrasonic thickness gauge.
Abrasion is the process of scuffing, scratching, wearing down, marring, or rubbing away. It can be intentionally imposed in a controlled process using an abrasive. Abrasion can be an undesirable effect of exposure to normal use or exposure to the elements.
There are two different types of haze that can occur in materials:
The hiding power is an ability of a paint to hide the surface that the paint was applied to. Numerically, it is defined as an area of surface coated by a volume of paint at which the "complete hiding" of the underlying surface occurs.