Glutamate permease

Last updated
Glt_symporter
Identifiers
SymbolGlt_symporter
Pfam PF03616
Pfam clan CL0064
InterPro IPR004445
TCDB 2.A.27
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

The sodium/glutamate symporter, also known as glutamate permease, is a transmembrane protein family found in bacteria and archaea. These proteins are symporters that are responsible for the sodium-dependent uptake of extracellular glutamate into the cell. They are integral membrane proteins located in the bacterial inner membrane. [1] The best-studied member of the family is GltS from Escherichia coli . GltS contains ten transmembrane helices arranged in two antiparallel 5-helix domains and functions as a homodimer. [1] [2] [3] Substrates for GltS include L- and D-glutamate, as well as toxic analogs α-methylglutamate, and homocysteate. [1] In studies of E. coli growth, bacteria without GltS were unable to grow in a medium where glutamate is the only source of carbon. [4]

The family is evolutionarily distant from other glutamate transporters. Phylogenetic analyses of GltS genes suggest that their presence in cyanobacteria can be attributed to at least two horizontal gene transfer events. [5]

Related Research Articles

<span class="mw-page-title-main">Transmembrane protein</span> Protein spanning across a biological membrane

A transmembrane protein (TP) is a type of integral membrane protein that spans the entirety of the cell membrane. Many transmembrane proteins function as gateways to permit the transport of specific substances across the membrane. They frequently undergo significant conformational changes to move a substance through the membrane. They are usually highly hydrophobic and aggregate and precipitate in water. They require detergents or nonpolar solvents for extraction, although some of them (beta-barrels) can be also extracted using denaturing agents.

<span class="mw-page-title-main">Reuptake</span> Reabsorption of a neurotransmitter by a neurotransmitter transporter

Reuptake is the reabsorption of a neurotransmitter by a neurotransmitter transporter located along the plasma membrane of an axon terminal or glial cell after it has performed its function of transmitting a neural impulse.

PEP group translocation, also known as the phosphotransferase system or PTS, is a distinct method used by bacteria for sugar uptake where the source of energy is from phosphoenolpyruvate (PEP). It is known to be a multicomponent system that always involves enzymes of the plasma membrane and those in the cytoplasm.

The galactose permease or GalP found in Escherichia coli is an integral membrane protein involved in the transport of monosaccharides, primarily hexoses, for utilization by E. coli in glycolysis and other metabolic and catabolic pathways (3,4). It is a member of the Major Facilitator Super Family (MFS) and is homologue of the human GLUT1 transporter (4). Below you will find descriptions of the structure, specificity, effects on homeostasis, expression, and regulation of GalP along with examples of several of its homologues.

<span class="mw-page-title-main">Ileal sodium/bile acid cotransporter</span> Protein-coding gene in the species Homo sapiens

Ileal sodium/bile acid cotransporter, also known as apical sodium–bile acid transporter (ASBT) and ileal bile acid transporter (IBAT), is a bile acid:sodium symporter protein that in humans is encoded by the SLC10A2 gene.

<span class="mw-page-title-main">Lactose permease</span>

Lactose permease is a membrane protein which is a member of the major facilitator superfamily. Lactose permease can be classified as a symporter, which uses the proton gradient towards the cell to transport β-galactosides such as lactose in the same direction into the cell.

<span class="mw-page-title-main">Sodium-solute symporter</span> Group of transport proteins

Members of the Solute:Sodium Symporter (SSS) Family (TC# 2.A.21) catalyze solute:Na+ symport. The SSS family is within the APC Superfamily. The solutes transported may be sugars, amino acids, organo cations such as choline, nucleosides, inositols, vitamins, urea or anions, depending on the system. Members of the SSS family have been identified in bacteria, archaea and eukaryotes. Almost all functionally well-characterized members normally catalyze solute uptake via Na+ symport.

The Formate-Nitrite Transporter (FNT) Family belongs to the Major Intrinsic Protein (MIP) Superfamily. FNT family members have been sequenced from Gram-negative and Gram-positive bacteria, archaea, yeast, plants and lower eukaryotes. The prokaryotic proteins of the FNT family probably function in the transport of the structurally related compounds, formate and nitrite.

The Nucleobase cation symporter-2 (NCS2) family, also called the Nucleobase ascorbate transporter (NAT) family, consists of over 1000 sequenced proteins derived from gram-negative and gram-positive bacteria, archaea, fungi, plants and animals. The NCS2/NAT family is a member of the APC Superfamily of secondary carriers. Of the five known families of transporters that act on nucleobases, NCS2/NAT is the only one that is most widespread. Many functionally characterized members are specific for nucleobases including both purines and pyrimidines, but others are purine-specific. However, two closely related rat/human members of the family, SVCT1 and SVCT2, localized to different tissues of the body, co-transport L-ascorbate (vitamin C) and Na+ with a high degree of specificity and high affinity for the vitamin. Clustering of NCS2/NAT family members on the phylogenetic tree is complex, with bacterial proteins and eukaryotic proteins each falling into at least three distinct clusters. The plant and animal proteins cluster loosely together, but the fungal proteins branch from one of the three bacterial clusters forming a tighter grouping. E. coli possesses four distantly related paralogous members of the NCS2 family.

<span class="mw-page-title-main">Sodium:dicarboxylate symporter</span> Protein family

It has been shown that integral membrane proteins that mediate the uptake of a wide variety of molecules with the concomitant uptake of sodium ions can be grouped, on the basis of sequence and functional similarities into a number of distinct families. One of these families is known as the sodium:dicarboxylate symporter family (SDF).

<span class="mw-page-title-main">Mercury transporter</span>

The mercury transporter superfamily is a family of transmembrane bacterial transporters of mercury ions. The common origin of all Mer superfamily members has been established. The common elements between family members are included in TMSs 1-2. A representative list of the subfamilies and proteins that belong to those subfamilies is available in the Transporter Classification Database.

The amino acid-polyamine-organocation (APC) superfamily is the second largest superfamily of secondary carrier proteins currently known, and it contains several Solute carriers. Originally, the APC superfamily consisted of subfamilies under the transporter classification number. This superfamily has since been expanded to include eighteen different families.

The Amino Acid-Polyamine-Organocation (APC) Family of transport proteins includes members that function as solute:cation symporters and solute:solute antiporters. They occur in bacteria, archaea, fungi, unicellular eukaryotic protists, slime molds, plants and animals. They vary in length, being as small as 350 residues and as large as 850 residues. The smaller proteins are generally of prokaryotic origin while the larger ones are of eukaryotic origin. Most of them possess twelve transmembrane α-helical spanners but have a re-entrant loop involving TMSs 2 and 3. The APC Superfamily was established to encompass a wider range of homologues.

Members of the Alanine or Glycine:Cation Symporter (AGCS) Family (TC# 2.A.25) transport alanine and/or glycine in symport with Na+ and or H+.

The anion exchanger family is a member of the large APC superfamily of secondary carriers. Members of the AE family are generally responsible for the transport of anions across cellular barriers, although their functions may vary. All of them exchange bicarbonate. Characterized protein members of the AE family are found in plants, animals, insects and yeast. Uncharacterized AE homologues may be present in bacteria. Animal AE proteins consist of homodimeric complexes of integral membrane proteins that vary in size from about 900 amino acyl residues to about 1250 residues. Their N-terminal hydrophilic domains may interact with cytoskeletal proteins and therefore play a cell structural role. Some of the currently characterized members of the AE family can be found in the Transporter Classification Database.

The potassium (K+) uptake permease (KUP) family (TC# 2.A.72) is a member of the APC superfamily of secondary carriers. Proteins of the KUP/HAK/KT family include the KUP (TrkD) protein of E. coli and homologues in both Gram-positive and Gram-negative bacteria. High affinity (20 μM) K+ uptake systems (Hak1, TC# 2.A.72.2.1) of the yeast Debaryomyces occidentalis as well as the fungus, Neurospora crassa, and several homologues in plants have been characterized. Arabidopsis thaliana and other plants possess multiple KUP family paralogues. While many plant proteins cluster tightly together, the Hak1 proteins from yeast as well as the two Gram-positive and Gram-negative bacterial proteins are distantly related on the phylogenetic tree for the KUP family. All currently classified members of the KUP family can be found in the Transporter Classification Database.

The gluconate:H+ symporter (GntP) family (TC# 2.A.8) is a family of transport proteins belonging to the ion transporter (IT) superfamily. Members of the GntP family include known gluconate permeases of E. coli and Bacillus species such as the D-Gluconate:H+ symporter of Bacillus subtillus (GntP; TC# 2.A.8.1.1) and the D-fructuronate/D-gluconate:H+ symporter of E. coli (GntP; TC# 2.A.8.1.3). A representative list of proteins belonging to the GntP family can be found in the Transporter Classification Database.

Arsenite resistance (Ars) efflux pumps of bacteria may consist of two proteins, ArsB and ArsA, or of one protein. ArsA proteins have two ATP binding domains and probably arose by a tandem gene duplication event. ArsB proteins all possess twelve transmembrane spanners and may also have arisen by a tandem gene duplication event. Structurally, the Ars pumps resemble ABC-type efflux pumps, but there is no significant sequence similarity between the Ars and ABC pumps. When only ArsB is present, the system operates by a pmf-dependent mechanism, and consequently belongs in TC subclass 2.A. When ArsA is also present, ATP hydrolysis drives efflux, and consequently the system belongs in TC subclass 3.A. ArsB therefore appears twice in the TC system but ArsA appears only once. These pumps actively expel both arsenite and antimonite.

The Monovalent Cation:Proton Antiporter-2 (CPA2) Family is a moderately large family of transporters belonging to the CPA superfamily. Members of the CPA2 family have been found in bacteria, archaea and eukaryotes. The proteins of the CPA2 family consist of between 333 and 900 amino acyl residues and exhibit 10-14 transmembrane α-helical spanners (TMSs).

The PTS L-Ascorbate (L-Asc) Family includes porters specific for L-ascorbate, and is part of the PTS-AG superfamily. A single PTS permease of the L-Asc family of PTS permeases has been functionally characterized. This is the SgaTBA system, renamed UlaABC by Yew and Gerlt.

References

  1. 1 2 3 Szvetnik A, Gál J, Kálmán M (October 2007). "Membrane topology of the GltS Na+/glutamate permease of Escherichia coli". FEMS Microbiology Letters. 275 (1): 71–9. doi: 10.1111/j.1574-6968.2007.00863.x . PMID   17662058.
  2. Mościcka KB, Krupnik T, Boekema EJ, Lolkema JS (July 2009). "Projection structure by single-particle electron microscopy of secondary transport proteins GltT, CitS, and GltS" (PDF). Biochemistry. 48 (28): 6618–23. doi:10.1021/bi900838d. PMID   19518127.
  3. Dobrowolski A, Lolkema JS (July 2010). "Evolution of antiparallel two-domain membrane proteins. Swapping domains in the glutamate transporter GltS" (PDF). Biochemistry. 49 (29): 5972–4. doi:10.1021/bi100918j. hdl: 11370/dd55689b-07f6-4f1e-9482-e4dee579418f . PMID   20557112.
  4. Kalman, Miklos; Gentry, DanielR.; Cashel, Michael (March 1991). "Characterization of the Escherichia coli K12 gltS glutamate permease gene". MGG Molecular & General Genetics. 225 (3): 379–86. doi:10.1007/BF00261677. PMID   2017136. S2CID   45433198.
  5. Flores E, Munro-Pastor AM, Meeks JC (2008). "Gene Transfer to Cyanobacteria in the Laboratory and in Nature". In Herrero A, Flores E (eds.). The cyanobacteria : molecular biology, genomics, and evolution. Norfolk, UK: Caister Academic Press. ISBN   9781904455158.
This article incorporates text from the public domain Pfam and InterPro: IPR004445