Goitrogen

Last updated
Broccoli is a goitrogenic food Broccoli2.jpg
Broccoli is a goitrogenic food

Goitrogens are substances that disrupt the production of thyroid hormones. This triggers the pituitary to release thyroid-stimulating hormone (TSH), which then promotes the growth of thyroid tissue, eventually leading to goiter. [1]

Contents

Goitrogenic drugs and chemicals

Chemicals that have been shown to have goitrogenic effects include:

Goitrogenic foods

Foods which have been demonstrated to have goitrogenic effects include soy, cassava (when crushed and not detoxified by soaking, [7] ) vegetables in the genus Brassica (such as broccoli and cabbage), [9] [ page needed ] and other cruciferous vegetables. [10] In places where iodine deficiency exists in tandem with millet being a major component of the diet, millet consumption can contribute to thyroid enlargement which is the start of endemic goiter. [11]

See also

Related Research Articles

<span class="mw-page-title-main">Congenital iodine deficiency syndrome</span> Impaired physical and mental development due to insufficient iodine intake

Congenital iodine deficiency syndrome (CIDS) is a medical condition present at birth marked by impaired physical and mental development, due to insufficient thyroid hormone (hypothyroidism) often caused by insufficient dietary iodine during pregnancy. It is one cause of underactive thyroid function at birth, called congenital hypothyroidism, historically referred to as cretinism (obsolete). If untreated, it results in impairment of both physical and mental development. Symptoms may include goiter, poor length growth in infants, reduced adult stature, thickened skin, hair loss, enlarged tongue, a protruding abdomen; delayed bone maturation and puberty in children; and mental deterioration, neurological impairment, impeded ovulation, and infertility in adults.

<span class="mw-page-title-main">Thyroid</span> Endocrine gland in the neck; secretes hormones that influence metabolism

The thyroid, or thyroid gland, is an endocrine gland in vertebrates. In humans, it is in the neck and consists of two connected lobes. The lower two thirds of the lobes are connected by a thin band of tissue called the isthmus (pl.: isthmi). The thyroid gland is a butterfly-shaped gland located in the neck below the Adam's apple. Microscopically, the functional unit of the thyroid gland is the spherical thyroid follicle, lined with follicular cells (thyrocytes), and occasional parafollicular cells that surround a lumen containing colloid. The thyroid gland secretes three hormones: the two thyroid hormones – triiodothyronine (T3) and thyroxine (T4) – and a peptide hormone, calcitonin. The thyroid hormones influence the metabolic rate and protein synthesis and growth and development in children. Calcitonin plays a role in calcium homeostasis. Secretion of the two thyroid hormones is regulated by thyroid-stimulating hormone (TSH), which is secreted from the anterior pituitary gland. TSH is regulated by thyrotropin-releasing hormone (TRH), which is produced by the hypothalamus.

<span class="mw-page-title-main">Graves' disease</span> Autoimmune endocrine disease

Graves' disease, also known as toxic diffuse goiter or Basedow’s disease, is an autoimmune disease that affects the thyroid. It frequently results in and is the most common cause of hyperthyroidism. It also often results in an enlarged thyroid. Signs and symptoms of hyperthyroidism may include irritability, muscle weakness, sleeping problems, a fast heartbeat, poor tolerance of heat, diarrhea and unintentional weight loss. Other symptoms may include thickening of the skin on the shins, known as pretibial myxedema, and eye bulging, a condition caused by Graves' ophthalmopathy. About 25 to 30% of people with the condition develop eye problems.

Thyroid-stimulating hormone (also known as thyrotropin, thyrotropic hormone, or abbreviated TSH) is a pituitary hormone that stimulates the thyroid gland to produce thyroxine (T4), and then triiodothyronine (T3) which stimulates the metabolism of almost every tissue in the body. It is a glycoprotein hormone produced by thyrotrope cells in the anterior pituitary gland, which regulates the endocrine function of the thyroid.

<span class="mw-page-title-main">Triiodothyronine</span> Chemical compound

Triiodothyronine, also known as T3, is a thyroid hormone. It affects almost every physiological process in the body, including growth and development, metabolism, body temperature, and heart rate.

<span class="mw-page-title-main">Thyroid hormone resistance</span> Medical condition

Thyroid hormone resistance (also resistance to thyroid hormone (RTH), and sometimes Refetoff syndrome) describes a rare syndrome in which the thyroid hormone levels are elevated but the thyroid stimulating hormone (TSH) level is not suppressed, or not completely suppressed as would be expected. The first report of the condition appeared in 1967. Essentially this is decreased end organ responsiveness to thyroid hormones. A new term "impaired sensitivity to thyroid hormone" has been suggested in March 2014 by Refetoff et al.

<span class="mw-page-title-main">Levothyroxine</span> Thyroid hormone

Levothyroxine, also known as L-thyroxine, is a synthetic form of the thyroid hormone thyroxine (T4). It is used to treat thyroid hormone deficiency (hypothyroidism), including a severe form known as myxedema coma. It may also be used to treat and prevent certain types of thyroid tumors. It is not indicated for weight loss. Levothyroxine is taken orally (by mouth) or given by intravenous injection. Levothyroxine has a half-life of 7.5 days when taken daily, so about six weeks is required for it to reach a steady level in the blood.

<span class="mw-page-title-main">Propylthiouracil</span> Medication used to treat hyperthyroidism

Propylthiouracil (PTU) is a medication used to treat hyperthyroidism. This includes hyperthyroidism due to Graves' disease and toxic multinodular goiter. In a thyrotoxic crisis it is generally more effective than methimazole. Otherwise it is typically only used when methimazole, surgery, and radioactive iodine is not possible. It is taken by mouth.

Iodine deficiency is a lack of the trace element iodine, an essential nutrient in the diet. It may result in metabolic problems such as goiter, sometimes as an endemic goiter as well as congenital iodine deficiency syndrome due to untreated congenital hypothyroidism, which results in developmental delays and other health problems. Iodine deficiency is an important global health issue, especially for fertile and pregnant women. It is also a preventable cause of intellectual disability.

<span class="mw-page-title-main">Thiamazole</span> Chemical compound

Thiamazole, also known as methimazole, is a medication used to treat hyperthyroidism. This includes Graves disease, toxic multinodular goiter, and thyrotoxic crisis. It is taken by mouth. Full effects may take a few weeks to occur.

<span class="mw-page-title-main">Thyroid disease</span> Medical condition

Thyroid disease is a medical condition that affects the function of the thyroid gland. The thyroid gland is located at the front of the neck and produces thyroid hormones that travel through the blood to help regulate many other organs, meaning that it is an endocrine organ. These hormones normally act in the body to regulate energy use, infant development, and childhood development.

Thyroid storm is a rare but severe and life-threatening complication of hyperthyroidism. It occurs when an overactive thyroid leads to hypermetabolism, which can cause death from cardiac arrest or multiple organ failure.

Thyroid function tests (TFTs) is a collective term for blood tests used to check the function of the thyroid. TFTs may be requested if a patient is thought to suffer from hyperthyroidism or hypothyroidism, or to monitor the effectiveness of either thyroid-suppression or hormone replacement therapy. It is also requested routinely in conditions linked to thyroid disease, such as atrial fibrillation and anxiety disorder.

<span class="mw-page-title-main">Reverse triiodothyronine</span> Chemical compound

Reverse triiodothyronine, also known as rT3, is an isomer of triiodothyronine (T3).

An antithyroid agent is a hormone inhibitor acting upon thyroid hormones.

<span class="mw-page-title-main">Thyroid hormones</span> Hormones produced by the thyroid gland

Thyroid hormones are any hormones produced and released by the thyroid gland, namely triiodothyronine (T3) and thyroxine (T4). They are tyrosine-based hormones that are primarily responsible for regulation of metabolism. T3 and T4 are partially composed of iodine, derived from food. A deficiency of iodine leads to decreased production of T3 and T4, enlarges the thyroid tissue and will cause the disease known as simple goitre.

<span class="mw-page-title-main">Iopanoic acid</span> Chemical compound

Iopanoic acid is an iodine-containing radiocontrast medium used in cholecystography. Both iopanoic acid and ipodate sodium are potent inhibitors of thyroid hormone release from thyroid gland, as well as of peripheral conversion of thyroxine (T4) to triiodothyronine (T3). These compounds inhibit 5'deiodinase (5'DID-1 and 5'DID-2) enzymes, which catalyse T4-T3 conversion in the thyroid cell, liver, kidney, skeletal muscle, heart, brain, pituitary. This accounts for the dramatic improvement in both subjective and objective symptoms of hyperthyroidism, particularly when they are used as an adjunctive therapy with thioamides (propylthiouracil, carbimazole). They can be used in the treatment of patients with severe thyrotoxicosis (thyroid storm) and significant morbidity (e.g., myocardial infarction, or stroke) for rapid control of elevated plasma triiodothyronine concentrations. The use of iopanoic acid for treatment of thyrotoxicosis has been discontinued in the United States.

<span class="mw-page-title-main">Goitrin</span> Chemical compound

Goitrin is an organosulfur compound classified as a derivative of oxazolidine and as a cyclic thiocarbamate. It reduces the production of thyroid hormones such as thyroxine. It is found in cruciferous vegetables such as cabbage, brussels sprouts and rapeseed oil, and is formed by the hydrolysis of a glucosinolate: progoitrin or 2-hydroxy-3-butenyl glucosinolate. The unstable isothiocyanate derived from the latter glucosinolate spontaneously cyclizes to goitrin, because the hydroxy group is situated in proximity to the isothiocyanate group. Hence, the oxygen in the molecule stems from the hydroxy group of the original unstable isothiocyanate. Plants containing this specific glucosinolate have goitrogenic potential due to the goitrin and thiocyanate they contain. However, they do not seem to alter thyroid function in humans at realistic amounts in the diet.

<span class="mw-page-title-main">Iodine in biology</span> Use of Iodine by organisms

Iodine is an essential trace element in biological systems. It has the distinction of being the heaviest element commonly needed by living organisms as well as the second-heaviest known to be used by any form of life. It is a component of biochemical pathways in organisms from all biological kingdoms, suggesting its fundamental significance throughout the evolutionary history of life.

<span class="mw-page-title-main">Vitexin</span> Chemical compound

Vitexin is an apigenin flavone glucoside, a chemical compound found in the passion flower, Vitex agnus-castus, in the Phyllostachys nigra bamboo leaves, in the pearl millet, and in Hawthorn.

References

  1. Bender, David A. (2009). "Goitrogens". A dictionary of food and nutrition (3rd ed.). Oxford: Oxford University Press. ISBN   9780199234875.
  2. Blackwell T, Werdin R, Eisenmenger M, FitzSimmons M (March 1989). "Goitrogenic effects in offspring of swine fed sulfadimethoxine and ormetoprim in late gestation". Journal of the American Veterinary Medical Association. 194 (4): 519–523.
  3. Rosenfeld H, Ornoy A, Shechtman S, Diav-Citrin O (2009). "Pregnancy outcome, thyroid dysfunction and fetal goitre after in utero exposure to propylthiouracil: a controlled cohort study". Br J Clin Pharmacol. 68 (4): 609–17. doi:10.1111/j.1365-2125.2009.03495.x. PMC   2780286 . PMID   19843064.
  4. Soldin OP, Braverman LE, Lamm SH (2001). "Perchlorate Clinical Pharmacology and Human Health: A Review". Ther Drug Monit. 23 (4): 316–31. doi:10.1097/00007691-200108000-00002. PMC   3640367 . PMID   11477312.
  5. Andreucci M, Solomon R, Tasanarong A (2014). "Side Effects of Radiographic Contrast Media: Pathogenesis, Risk Factors, and Prevention". Biomed Res Int. 2014: 741018. doi: 10.1155/2014/741018 . PMC   4034507 . PMID   24895606.
  6. Verhoeven DT, Verhagen H, Goldbohm RA, van den Brandt PA, van Poppel G (February 1997). "A review of mechanisms underlying anticarcinogenicity by brassica vegetables". Chem. Biol. Interact. 103 (2): 79–129. doi:10.1016/S0009-2797(96)03745-3. PMID   9055870.
  7. 1 2 Vanderpas J (2006). "Nutritional epidemiology and thyroid hormone metabolism". Annu. Rev. Nutr. 26: 293–322. doi:10.1146/annurev.nutr.26.010506.103810. PMID   16704348.
  8. Erdogan MF (2003). "Thiocyanate overload and thyroid disease". BioFactors (Review). 19 (3–4): 107–11. doi:10.1002/biof.5520190302. PMID   14757960.
  9. Mitchell, Richard Sheppard; Kumar, Vinay; Abbas, Abul K.; Fausto, Nelson (2007). Robbins Basic Pathology (8th ed.). Philadelphia: Saunders. ISBN   978-1-4160-2973-1.
  10. Gaitan, Eduardo (July 1990). "Goitrogens in Food and Water". Annual Review of Nutrition. 10 (1): 21–37. doi:10.1146/annurev.nu.10.070190.000321. PMID   1696490.
  11. Eduardo Gaitan; Raymond, H. Lindsay; Robert D. Reichert; Sidney H. Ingbar; Robert C. Cooksey; Jim Legan; Edward F. Meydrech; John Hill; Ken Kubota (1989). "Antithyroid and Goitrogenic Effects of Millet: Role of C-Glycosylflavones". The Journal of Clinical Endocrinology & Metabolism. 68 (4): 707–714. doi:10.1210/jcem-68-4-707. PMID   2921306.